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In this section...

“What Is a Streaming Pixel Interface?” on page 1-2

“How Does a Streaming Pixel Interface Work?” on page 1-2

“Why Use a Streaming Pixel Interface?” on page 1-3

“Pixel Stream Conversion Using Blocks and System Objects” on page 1-4
“Timing Diagram of Single Pixel Serial Interface” on page 1-5

“Timing Diagram of Multipixel Serial Interface” on page 1-6

What Is a Streaming Pixel Interface?

In hardware, processing an entire frame of video at one time has a high cost in memory and area. To
save resources, serial processing is preferable in HDL designs. Vision HDL Toolbox blocks and
System objects operate on a pixel, line, or neighborhood rather than a frame. The blocks and objects
accept and generate video data as a serial stream of pixel data and control signals. The control
signals indicate the relative location of each pixel within the image or video frame. The protocol
mimics the timing of a video system, including inactive intervals between frames. Each block or
object operates without full knowledge of the image format, and can tolerate imperfect timing of lines
and frames.

All Vision HDL Toolbox blocks and System objects support single pixel streaming (with 1 pixel per
cycle). Some blocks and System objects also support multipixel streaming (with 4 or 8 pixels per
cycle) for high-rate or high-resolution video. Multipixel streaming increases hardware resources to
support higher video resolutions with the same hardware clock rate as a smaller resolution video.
HDL code generation for multipixel streaming is not supported with System objects. Use the
equivalent blocks to generate HDL code for multipixel algorithms.

How Does a Streaming Pixel Interface Work?

Video capture systems scan video signals from left to right and from top to bottom. As these systems
scan, they generate inactive intervals between lines and frames of active video.

The horizontal blanking interval is made up of the inactive cycles between the end of one line and the
beginning of the next line. This interval is often split into two parts: the front porch and the back
porch. These terms come from the synchronize pulse between lines in analog video waveforms. The
front porch is the number of samples between the end of the active line and the synchronize pulse.
The back porch is the number of samples between the synchronize pulse and the start of the active
line.

The vertical blanking interval is made up of the inactive cycles between the ending active line of one
frame and the starting active line of the next frame.

The scanning pattern requires start and end signals for both horizontal and vertical directions. The
Vision HDL Toolbox streaming pixel protocol includes the blanking intervals, and allows you to
configure the size of the active and inactive frame.
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In the frame diagram, the blue shaded area to the left and right of the active frame indicates the
horizontal blanking interval. The orange shaded area above and below the active frame indicates the
vertical blanking interval. For more information on blanking intervals, see “Configure Blanking
Intervals” on page 2-2.

Why Use a Streaming Pixel Interface?
Format Independence

The blocks and objects using this interface do not need a configuration option for the exact image
size or the size of the inactive regions. In addition, if you change the image format for your design,
you do not need to update each block or object. Instead, update the image parameters once at the
serialization step. Some blocks and objects still require a line buffer size parameter to allocate
memory resources.

By isolating the image format details, you can develop a design using a small image for faster
simulation. Then once the design is correct, update to the actual image size.

Error Tolerance

Video can come from various sources such as cameras, tape storage, digital storage, or switching and
insertion gear. These sources can introduce timing problems. Human vision cannot detect small
variance in video signals, so the timing for a video system does not need to be perfect. Therefore,
video processing blocks must tolerate variable timing of lines and frames.

By using a streaming pixel interface with control signals, each Vision HDL Toolbox block or object
starts computation on a fresh segment of pixels at the start-of-line or start-of-frame signal. The
computation occurs whether or not the block or object receives the end signal for the previous
segment.
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The protocol tolerates minor timing errors. If the number of valid and invalid cycles between start
signals varies, the blocks or objects continue to operate correctly. Some Vision HDL Toolbox blocks
and objects require minimum horizontal blanking regions to accommodate memory buffer operations.

Pixel Stream Conversion Using Blocks and System Objects

In Simulink®, use the Frame To Pixels block to convert framed video data to a stream of pixels and
control signals that conform to this protocol. The control signals are grouped in a nonvirtual bus data
type called pixelcontrol. You can configure the block to return a pixel stream with 1, 4, or 8 pixels
per cycle.

In MATLAB®, use the visionhdl.FrameToPixels object to convert framed video data to a stream
of pixels and control signals that conform to this protocol. The control signals are grouped in a
structure data type. You can configure the object to create a pixel stream with 1, 4, or 8 pixels per
cycle.

If your input video is already in a serial format, you can design your own logic to generate
pixelcontrol control signals from your existing serial control scheme. For example, see “Convert
Camera Control Signals to pixelcontrol Format” on page 1-24 and “Integrate Vision HDL Blocks Into
Camera Link System” on page 1-29.

Supported Pixel Data Types

Vision HDL Toolbox blocks and objects include ports or arguments for streaming pixel data. Each
block and object supports one or more pixel formats. The supported formats vary depending on the
operation the block or object performs. This table details common video formats supported by Vision
HDL Toolbox.

Type of Video Pixel Format

Binary Each pixel is represented by a single boolean or logical value. Used for true
black-and-white video.

Grayscale Each pixel is represented by luma, which is the gamma-corrected luminance
value. This pixel is a single unsigned integer or fixed-point value.

Color Each pixel is represented by 2 to 4 unsigned integer or fixed-point values
representing the color components of the pixel. Vision HDL Toolbox blocks and
objects use gamma-corrected color spaces, such as R'G'B' and Y'ChCr.

To process multicomponent streams for blocks that do not support
multicomponent input, replicate the block for each component. The
pixelcontrol bus for all components is identical, so you can connect a single
bus to multiple replicated blocks.

To set up multipixel streaming for color video, you can configure the Frame To
Pixels block to return a multicomponent and multipixel stream. See “MultiPixel-
MultiComponent Video Streaming” on page 1-17.

Vision HDL Toolbox blocks have an input or output port, pixel, for the pixel data. Vision HDL
Toolbox System objects expect or return an argument representing the pixel data. The following table
describes the format of the pixel data.

1-4
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Port or Argument

Description

Data Type

pixel

» Single pixel streaming — A scalar that represents

Supported data types can include:

a binary or grayscale pixel value or a row vector )
of two to four values representing a color pixel |[* boolean or logical
* uintorint

* Multipixel streaming — Column vector of four or ]
e fixdt()

eight pixel values

«  Multipixel-multicomponent streaming — Matrix |double and single data types are

of four or eight pixel values by two to four color |Supported for simulation, but not
components. for HDL code generation.

You can simulate System objects with a multipixel
streaming interface, but System objects are not
supported for HDL code generation. Use the
equivalent blocks to generate HDL code for
multipixel algorithms.

Note These blocks support multipixel streaming:

* Image Filter

* Edge Detector

* Median Filter

* Line Buffer

* Binary morphology: Closing, Dilation, Erosion, and Opening
* Lookup Table

» Pixel Stream Aligner

Streaming Pixel Control Signals

Vision HDL Toolbox blocks and objects include ports or arguments for control signals relating to each
pixel. These five control signals indicate the validity of a pixel and its location in the frame. For
multipixel streaming, each vector of pixel values has one set of control signals.

In Simulink, the control signal port is a nonvirtual bus data type called pixelcontrol. For details of
the bus data type, see “Pixel Control Bus” on page 1-22.

In MATLAB, the control signal argument is a structure. For details of the structure data type, see
“Pixel Control Structure” on page 1-23.

Timing Diagram of Single Pixel Serial Interface

To illustrate the streaming pixel protocol, this example converts a frame to a sequence of control and
data signals. Consider a 2-by-3 pixel image. To model the blanking intervals, configure the serialized
image to include inactive pixels in these areas around the active image:

* 1-pixel-wide back porch
» 2-pixel-wide front porch
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* 1 line before the first active line
e 1 line after the last active line

You can configure the dimensions of the active and inactive regions with the Frame To Pixels block or
the visionhdl.FrameToPixels object.

In the figure, the active image area is in the dashed rectangle, and the inactive pixels surround it. The
pixels are labeled with their grayscale values.

The block or object serializes the image from left to right, one line at a time. The timing diagram
shows the control signals and pixel data that correspond to this image, which is the serial output of
the Frame To Pixels block for this frame, configured for single-pixel streaming.

N [ W [ S [y [ S Sy [ [y [ S Sy S [ S S B S ) S [

30 &0 50 X0 120 Y50 {80 X0
[ 1

15t line 2" Jine 3 |ine 4 line

For an example using the Frame to Pixels block to serialize an image, see “Design Video Processing
Algorithms for HDL in Simulink”.

For an example using the FrameToPixels object to serialize an image, see “Design a Hardware-
Targeted Image Filter in MATLAB”.

Timing Diagram of Multipixel Serial Interface

This example converts a frame to a multipixel stream with 4 pixels per cycle and corresponding
control signals. Consider a 64-pixel-wide frame with these inactive areas around the active image.
* 4-pixel-wide back porch

* 4-pixel-wide front porch

* 4 lines before the first active line

* 4 lines after the last active line

The Frame to Pixels block configured for multipixel streaming returns pixel vectors formed from the
pixels of each line in the frame from left to right. This diagram shows the top-left corner of the frame.
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The gray pixels show the active area of the frame, and the zero-value pixels represent blanking pixels.
The label on each active pixel represents the location of the pixel in the frame. The highlighted boxes
show the sets of pixels streamed on one cycle. The pixels in the inactive region are also streamed four
at a time. The gray box shows the four blanking pixels streamed the cycle before the start of the
active frame. The blue box shows the four pixel values streamed on the first valid cycle of the frame,
and the orange box shows the four pixel values streamed on the second valid cycle of the frame. The
green box shows the first four pixels of the next active line.

Q 0 0 (W] ]
0o [0 [o [o Pan2is e is s |7 8 #9140
65 |66 |67 |68 69 [70 |71 |72 |73 |74 |
(0 |0 |0 |0 |129]130[131]132|133]134]135]136] 137 138
mmmmmm
(0 |0 Jo |o [257]258]259]260] 261262263 ] 264] 265] 266]

This waveform shows the multipixel streaming data and control signals for the first line of the same
frame, streamed with 4 pixels per cycle. The pixelcontrol signals that apply to each set of four
pixel values are shown below the data signals. Because the vector has only one valid signal, the
pixels in the vector are either all valid or all invalid. The hStart and vStart signals apply to the
pixel with the lowest index in the vector. The hEnd and vEnd signals apply to the pixel with the
highest index in the vector.

Prior to the time period shown, the initial vertical blanking pixels are streamed four at a time, with all
control signals set to false. This waveform shows the pixel stream of the first line of the image. The
gray, blue, and orange boxes correspond to the highlighted areas of the frame diagram. After the first
line is complete, the stream has two cycles of horizontal blanking that contains 8 invalid pixels (front
and back porch). Then, the waveform shows the next line in the stream, starting with the green box.

o000

For an example model that uses multipixel streaming, see “Filter Multipixel Video Streams” on page
1-9.

See Also
Frame To Pixels | Pixels To Frame | visionhdl.FrameToPixels | visionhdl.PixelsToFrame
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Related Examples

“Design Video Processing Algorithms for HDL in Simulink”
“Design a Hardware-Targeted Image Filter in MATLAB”
“Filter Multipixel Video Streams” on page 1-9
“MultiPixel-MultiComponent Video Streaming” on page 1-17
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Filter

Multipixel Video Streams

This example shows how to design filters that operate on a multipixel input video stream. Use
multipixel streaming to process high-resolution or high-frame-rate video with the same synthesized
clock frequency as a single-pixel streaming interface. Multipixel streaming also improves simulation
speed and throughput because fewer iterations are required to process each frame, while
maintaining the hardware benefits of a streaming interface.

The example model has three subsystems which each perform the same algorithm:

SinglePixelGaussianEdge: Uses the Image Filter and Edge Detector blocks to operate on a
single-pixel stream. This subsystem shows how the rates and interfaces for single-pixel streaming
compare with multipixel designs.

MultiPixelGaussianEdge: Uses the Image Filter and Edge Detector blocks to operate on a
multipixel stream. This subsystem shows how to use the multipixel interface with library blocks.

MultiPixelCustomGaussianEdge: Uses the Line Buffer block to build a Gaussian filter and Sobel
edge detection for a multipixel stream. This subsystem shows how to use the Line Buffer output
for multipixel design.

Processing multipixel video streams allows for higher frame rates to be achieved without a
corresponding increase to the clock frequency. Each of the subsystems can achieve 200MHz clock
frequency on a Xilinx ZC706 board. The 480p video stream has Total pixels per line x Total video
lines = 800*525 cycles per frame. With a single pixel stream you can process 200M/(800*525) = 475
frames per second. In the multipixel subsystem, 4 pixels are processed on each cycle, which reduces
the number of cycles per line to 200. This means that with a multipixel stream operating on 4 pixels
at a time, at 200MHz, on a 480p stream, 1900 frames can be processed per second. If the resolution
is increased from 480p to 1080p, 80 frames per second can be achieved in the single pixel case
versus 323 frames per second for 4 pixels at a time or 646 frames per second for 8 pixels at a time.

I

rhinos.avi
W 240x320, 1.0 fps

boclean [430x640]

pixelOut frame

uintf [240x320] _| [480x540]

inlE [460<340]
rame
[240x320]

[48FB40]

Resize
iaan

ool
walidOut

ciriCut e

Video Source

SinglaDisplay

SinglePixelGaussianEdge

I

boolean [430x640]
frame

[480x640]
frama
Pr6al] boolsan

walidOut

E

MultiDisplay

I

boolean [430x640]
frame

[480x640] !

frama
hooksan

[480nB40]
ameal) validOut

MultiCustomDisplay

Multipixel Streaming Using Library Blocks

Generate a multipixel stream from the Frame to Pixels block by setting Number of pixels to 4 or 8.
The default value of 1 returns a scalar pixel stream with a sample rate of Total pixels per line *
Total video lines faster than the frame rate. This rate shows red in the example model. The two
multipixel subsystems use a multipixel stream with Number of pixels set to 4. This configuration
returns 4 pixels on each clock cycle and has a sample rate of (Total pixels per line/4) * Total video
lines. The lower output rate, which is green in the model, shows that you can increase either the

1-9



1 Streaming Pixel Interface

input frame rate or resolution by a factor of 4 and therefore process 4 times as many pixels in the
same frame period using the same clock frequency as the single pixel case.

The SinglePixelGaussianEdge and MultiPixelGaussianEdge subsystems compute the same result
using the Image Filter and Edge Detector blocks.

In MultiPixelGaussianEdge, the blocks accept and return four pixels on each clock cycle. You do
not have to configure the blocks for multipixel streaming, they detect the input size on the port. The
pixelcontrol bus indicates the validity and location in the frame of each set of four pixels. The
blocks buffer the [4x1] stream to form four [ KernelHeight x KernelWidth ] kernels, and compute four
convolutions in parallel to give a [4x1] output.

uintd [4x1] el el uiritd [4x1] | i £ boolean [4x
. il . pee i . Wﬁ.
pizelin . Image Filter . Sobel . leelom
pixelconiral pixelconiral pixelconirg
otrl ot ctrl ctrl ===
ctrlin ctriCut

Custom Multipixel Algorithms

The MultiPixelCustomGaussianEdge subsystem uses the Line Buffer block to implement a custom
filtering algorithm. This subsystem is similar to how the library blocks internally implement multipixel
kernel operations. The Image Filter and Edge Detector blocks use more detailed optimizations than
are shown here. This implementation shows a starting point for building custom multipixel algorithms
using the output of the Line Buffer block.

The custom filter and custom edge detector use the Line Buffer block to return successive

[ KernelHeight x NumberofPixels ] regions. Each region is passed to the Kernellndexer subsystem
which uses buffering and indexing logic to form Number of Pixels * [ KernelHeight x KernelWidth ]
filter kernels. Then each kernel is passed to a separate FilterKernel subsystem to perform
convolutions in parallel.

wint8

15%3]

FilterkKemal1

wintd

16%3]

uinB [5x5]

wintd [54] - 1 wints [4x1]
uintd [#x1] pixal rlpixsiMai KemetWindow! el FilterKemel2 @4r
pixel 1554 KemelWindow2 f——— ] —
- ] pixelcontrol Lint [523] pixelOut
pixelln Line Buffer bl ontrolin KemelWindow3 ——
piseloonirol - uint? [5+5] » o
(G p——mmmlotd e |boolesn on (o [EEIcEnire [5x3]
ctrin controlOut
K lind
rmelindexer FillarKemeld
winl3
5] e
1
FillerKemal4
pixelconiral
z® (z)
ctriOut
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Form Kernels from Line Buffer Output

The Kernellndexer subsystem forms 4 [5x5] filter kernels from the 2-D output of the Line Buffer
block.
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The diagram shows how the filter kernel is extracted from the [5x4] output stream, for the kernel that
is centered on the first pixel in the [4x1] output. This first kernel includes pixels from 2 adjacent [5x4]
Line Buffer outputs.
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The kernel centered on the last pixel in the [4x1] output also includes the third adjacent [5x4] output.
So, to form four [5x5] kernels, the subsystem must access columns from three [5x4] matrices.

P P P PP
P P P P P

P P PP P
P P PP
P P PP
p p p p |10
P P P P |20
P P PP

PP PP
P PP D
2 (314 s
11 12 13114 15
21 22 23124 25

- I T

6 718 9 10
16 17118 19 20
26 27128 29 30

30 31 32 33 34 35 36 37,38 39 40

The Kernellndexer subsystem uses the current [5x4] input, and stores two more [5x4] matrices using
registers enabled by shiftEnable. This design is similar to the tapped delay line used with a Line
Buffer using single pixel streaming. The subsystem then accesses pixel data across the columns to
form the four [5x5] kernels. The Image Filter block uses this same logic internally when the block has
multipixel input. The block automatically designs this logic at compile time for any supported kernel

size.

Implement Filters

Since the input multipixel stream is a [4x1] vector, the filters must perform four convolutions on each
cycle to keep pace with the incoming data. There are four parallel FilterKernel subsystems that each
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perform the same operation. The [5x5] matrix multiply is implemented as a [25x1] vector multiply by
flattening the input matrix and using a For Each subsystem containing a pipelined multiplier. The
output is passed to an adder tree. The adder tree is also pipelined, and the pipeline latency is applied
to the pixelcontrol signal to match. The results of the four FilterKernel subsystems are then

concatenated into a [4x1] output vector.

uint8 [5x5] I:o:l uintd [25x1] - >

- - - fx24_En15 [25x¢1] uintg
G| L 26x1] i3 =ntal  » (1)

KarnalWindaw [F] | 1 ) @ 1 _253:_..]. Treeln TreaCOut

] ) pixal
AdderTres
ufi16_En18 [T 1o Jufix18_En15 [25x1]
hm H

[Ge3][ L=

Implement Edge Detectors

To match the algorithm of the Edge Detector block, this custom edge detector uses a [3x3] kernel
size. Compare this Kernellndexer subsystem for the [3x3] edge detection with the [5x5] kernel
described above. The algorithm still must access three successive matrices from the output of the
Line Buffer block (including padding on either side of the kernel). However, the algorithm saves fewer

columns to form a smaller filter kernel.
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Extending to Larger Kernel Sizes

For a [4x1] multipixel stream, the Kernellndexer logic will look similar up to [11x11] kernel size. At
that size, the number of padding pixels, (floor(11/2)) = 5, will overlap on two [11x4] matrices
returned from the Line Buffer. This overlap means the algorithm would need to store five [5x4]
matrices from the Line Buffer to form four [11x11] kernels on each cycle.
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Improving Simulation Time

In the default example configuration, the single pixel, multipixel, and custom multipixel subsystems
all run in parallel. The simulation speed is limited by the time processing the single-pixel path
because it requires more iterations to process the same size of frame. To observe the simulation
speed improvement for multipixel streaming, comment out the single-pixel data path.

HDL Implementation Results
HDL was generated from both the MultiPixelGaussianEdge subsystem and the
MultiPixelCustomGaussianEdge subsystem and put through Place and Route on a Xilinx™ ZC706

board. The MultiPixelCustomGaussianEdge subsystem, which does not attempt to optimize
coefficients, had the following results -

T =
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4x2 table
Resource Usage
DSP48 108
Flip Flop 4195
LUT 4655
BRAM 12

The MultiPixelGaussianEdge subsystem, which uses the optimized Image Filter and Edge Detector
blocks uses less resources, as shown in the table below. This comparison shows the resource savings
achieved because the blocks analyze the filter structure and pre-add repeated coefficients.

T =
4x2 table
Resource Usage
DSP48 16
Flip Flop 3959
LUT 1797
BRAM 10
See Also

Edge Detector | Frame To Pixels | Image Filter | Pixels To Frame

More About

. “Streaming Pixel Interface” on page 1-2
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MultiPixel-MultiComponent Video Streaming

This example shows how to work with a multipixel-multicomponent pixel stream. Multipixel-
multicomponent streaming enables real-time processing of high-resolution or high-frame-rate color
video streams.

To demonstrate working with such a video stream, this example implements the well-known bloom
effect image post-processing technique. The bloom effect introduces or enhances the glow of light
sources in an image.

Top Level 1/0

Each pixel of a high-resolution or high-frame-rate pixel stream is modeled as a NumPixel-by-
NumComponent matrix. Matrix data types are supported for HDL code generation within a design,
but not for the ports of the top-level subsystem. In this case, the input pixel stream is split into three
4-by-1 vectors at the input of the DUT, and then recombined at the output into a 4-by-3 matrix for the
Pixels To Frame block.

uintB [4x1] - " wintB [4x1]
WG' [421] poeein . —|_r I
. uintB [4x3] i
[elbic . 3 [4BxG4 | i

2 [4B0x840:3] uintB [4x1] e T winte [4x1] el >
" frame 4 poelOutG ———— T r BB40n3
4 B0E0nd . pixelcontiol [4’:!: [4x1] sl mlsl ] : |
_ 1 ctrl
| it [1] wintB [4x1] [#1]
w o picelinB pioelCuts
B pixelcontrol B
—_— 3 ctrin cirlOut e
o o

Bloom Effect
The example model follows these three steps to add a bloom effect to the input image.

1 The MultiPixelColorSpaceConverter and BrightSpotFilter subsystems find bright spots in the
intensity image by checking pixel values against a threshold.
The 15x15 Blur subsystem spreads out the bright spots by applying a Gaussian filter.
The BlendBloom subsystem adds the Gaussian-enhanced bright spots back to the original image.

The model uses For Each subsystems for repeated operations in parallel, which results in a cleaner
model and reduces the number of HDL files that are generated.
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Matrix Flattening

Vision HDL Toolbox™ neighborhood-processing blocks can operate on vector inputs, but do not
support matrix inputs. The line buffer used inside the blocks returns a NumPixels-by-KernelHeight
matrix. Using multicomponent inputs would result in a NumPixels-by-KernelHeight-by-
NumComponents output matrix, however, 3-D matrices are not supported for HDL code generation.
For Each subsystems support HDL code generation with scalar and vector inputs but not with matrix
inputs. To work around this issue, the model flattens the NumPixels-by-NumComponents matrix into a
NumPixels*NumComponents-by-1 vector, and then uses the partition settings on For Each subsystems
to repeat the operation across each slice of the vector.

The model encodes the pixel vector in two different ways. The first encoding represents the pixels as
four RGB values concatenated together into a 12-by-1 vector, as shown in this diagram. The model
sets the Partition width parameter of the MultiPixelColorSpaceConverter subsystem to 3. The
subsystem implements four RGB-to-Intensity operations in parallel.

The second pixel encoding concatenates four R, G, or B pixels together, as shown in this diagram. The
15x15 Blur subsystem accepts a 12-by-1 input vector. The model sets the Partition width parameter
of the 15x15 Blur subsystem to 4, so it operates on three 4-by-1 multipixel vectors. The subsystem
implements three Image Filter blocks in parallel. Each filter operates on a 4-by-15 window and
returns a 4-by-1 vector.
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Simulation Results

Simulating the model displays these input and output images. The bloom effect makes the lighted
areas of the scene look brighter and shows a halo effect.

Hallwaylnput wliml X
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HallwayBloom wlal X

; 4

Implementation Results

This table shows the synthesis results of HDL code generated from the DUT subsystem and
synthesized for a Xilinx™ Zyng™ ZC706 board. Because none of the resources exceed 25% of their
respective category, the design has a relatively small footprint.

T —
4x2 table

Resource Usage
DSP48 84
Flip Flop 62724
LUT 36710
BRAM 132

See Also

Frame To Pixels | Pixels To Frame
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More About

. “Streaming Pixel Interface” on page 1-2
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Pixel Control Bus

Vision HDL Toolbox blocks use a nonvirtual bus data type, pixelcontrol, for control signals
associated with serial pixel data. The bus contains 5 boolean signals indicating the validity of a pixel
and its location within a frame. You can easily connect the data and control output of one block to the
input of another, because Vision HDL Toolbox blocks use this bus for input and output. To convert an
image into a pixel stream and a pixelcontrol bus, use the Frame to Pixels block.

Signal Description Data Type

hStart true for the first pixel in a horizontal line of a frame [boolean

hEnd true for the last pixel in a horizontal line of a frame |boolean

vStart true for the first pixel in the first (top) line of a boolean
frame

vEnd true for the last pixel in the last (bottom) line ofa |[boolean
frame

valid true for any valid pixel boolean

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
VENnd signals apply to the pixel with the highest index in the vector.

Troubleshooting: When you generate HDL code from a Simulink model that uses this bus, you may
need to declare an instance of pixelcontrol bus in the base workspace. If you encounter the error
Cannot resolve variable 'pixelcontrol' when you generate HDL code in Simulink, use the
pixelcontrolbus function to create an instance of the bus type. Then try generating HDL code
again.

To avoid this issue, the Vision HDL Toolbox model template includes this line in the InitFcn
callback.

evalin('base', 'pixelcontrolbus")

See Also
Frame To Pixels | Pixels To Frame | pixelcontrolbus

More About

. “Streaming Pixel Interface” on page 1-2
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Pixel Control Structure

Vision HDL Toolbox System objects use a structure data type for control signals associated with serial
pixel data. The structure contains five Logical signals indicating the validity of a pixel and its
location within a frame. You can easily pass the data and control output arguments of one Vision HDL
Toolbox System object™ as the input arguments to another Vision HDL Toolbox System object,
because the objects use this structure for input and output control signal arguments. To convert an
image into a pixel stream and control signals, use the visionhdl.FrameToPixels System object.

Signal Description Data Type

hStart true for the first pixel in a horizontal line of a frame [logical

hEnd true for the last pixel in a horizontal line of a frame |logical

vStart true for the first pixel in the first (top) line of a logical
frame

vEnd true for the last pixel in the last (bottom) line ofa |logical
frame

valid true for any valid pixel logical

See Also

pixelcontrolsignals | pixelcontrolstruct|visionhdl.FrameToPixels |

visionhdl.PixelsToFrame

More About

. “Streaming Pixel Interface” on page 1-2
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Convert Camera Control Signals to pixelcontrol Format

1-24

This example shows how to convert Camera Link® signals to the pixelcontrol structure, invert the
pixels with a Vision HDL Toolbox object, and convert the control signals back to the Camera Link
format.

Vision HDL Toolbox™ blocks and objects use a custom streaming video format. If your system
operates on streaming video data from a camera, you must convert the camera control signals into
this custom format. Alternatively, if you integrate Vision HDL Toolbox algorithms into existing design
and verification code that operates in the camera format, you must also convert the output signals
from the Vision HDL Toolbox design back to the camera format.

You can generate HDL code from the three functions in this example. To create local copies of all the
files in this example, so you can view and edit them, click the Open Script button.

Create Input Data in Camera Link Format

The Camera Link format consists of three control signals: F indicates the valid frame, L indicates
each valid line, and D indicates each valid pixel. For this example, create input vectors in the Camera
Link format to represent a basic padded video frame. The vectors describe this 2-by-3, 8-bit grayscale
frame. In the figure, the active image area is in the dashed rectangle, and the inactive pixels
surround it. The pixels are labeled with their grayscale values.

F = logical([o,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,01);
L = logical([o,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,01);
D = logical([o,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
pixel = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);

Design Vision HDL Toolbox Algorithm

Create a function to invert the image using Vision HDL Toolbox algorithms. The function contains a
System object that supports HDL code generation. This function expects and returns a pixel and
associated control signals in Vision HDL Toolbox format.

function [pixQut,ctrlOut] = InvertImage(pixIn,ctrlIn)

persistent invertI;
if isempty(invertI)
tabledata = linspace(255,0,256);
invertI = visionhdl.LookupTable(uint8(tabledata));
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end

% *Note:* This syntax runs only in R2016b or later. If you are using an
% earlier release, replace each call of an object with the equivalent |step|
% syntax. For example, replace |myObject(x)| with |step(myObject,x)]|.
[pix0Qut,ctrlOut] = invertI(pixIn,ctrlIn);

end

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox control
signal format. The object converts the control signals, and then calls the pixelcontrolstruct
function to create the structure expected by the Vision HDL Toolbox System objects. This code
snippet shows the logic to convert the signals.

ctrl = pixelcontrolstruct(obj.hStartOutReg,obj.hEndOutReg,...
obj.vStartOutReg,obj.vEndOutReg,obj.validOutReg);

vStart = obj.FReg && ~obj.FPrevReg;
vEnd = ~F && obj.FReg;
hStart = obj.LReg && ~obj.LPrevReg;
hEnd = ~L && obj.LReg;

obj.vStartOutReg = vStart;
obj.vEndOutReg = vEnd;
obj.hStartOutReg = hStart;
obj.hEndOutReg = hEnd;
obj.validOutReg = obj.DReg;

The object stores the input and output control signal values in registers. vStart goes high for one
cycle at the start of F. vEnd goes high for one cycle at the end of F. hStart and hEnd are derived
similarly from L. The object returns the current value of ctrl each time you call it.

This processing adds two cycles of delay to the control signals. The object passes through the pixel
value after matching delay cycles. For the complete code for the System object, see
CAMERALINKtoVHT Adapter.m.

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera Link format.
The object calls the pixelcontrolsignals function to flatten the control structure into its
component signals. Then it computes the equivalent Camera Link signals. This code snippet shows
the logic to convert the signals.

[hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl);

Fnew = (~obj.FOutReg && vStart) || (obj.FPrevReg && ~obj.vEndReg);
Lnew = (~obj.LOutReg && hStart) || (obj.LPrevReg && ~obj.hEndReg);
obj.FOutReg = Fnew;
obj.LOutReg = Lnew;
obj.DOutReg = valid;

The object stores the input and output control signal values in registers. F is high from vStart to
vEnd. L is high from hStart to hEnd. The object returns the current values of FOutReg, LOutReg,
and DOutReg each time you call it.
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This processing adds one cycle of delay to the control signals. The object passes through the pixel
value after a matching delay cycle. For the complete code for the System object, see
VHTtoCAMERALINKAdapter.m.

Create Conversion Functions That Support HDL Code Generation

Wrap the converter System objects in functions, similar to InvertImage, so you can generate HDL
code for these algorithms.

function [ctrl,pixelOut] = CameralLinkToVisionHDL(F,L,D,pixel)

% CameralLink2VisionHDL : converts one cycle of CameraLink control signals
% to Vision HDL format, using a custom System object.

% Introduces two cycles of delay to both ctrl signals and pixel data.

persistent CL2VHT;
if isempty(CL2VHT)
CL2VHT = CAMERALINKtoVHT Adapter();
end

[ctrl,pixelOut] = CL2VHT(F,L,D,pixel);

See CameraLinkToVisionHDL.m, and VisionHDLToCameralLink.m.

Write a Test Bench

To invert a Camera Link pixel stream using these components, write a test bench script that:

1 Preallocates output vectors to reduce simulation time

2 Converts the Camera Link control signals for each pixel to the Vision HDL Toolbox format
3 Calls the Invert function to flip each pixel value

4 Converts the control signals for that pixel back to the Camera Link format

[~,numPixelsPerFrame] = size(pixel);

pix0Out = zeros(numPixelsPerFrame,1l, 'uint8');
pixel d = zeros(numPixelsPerFrame,1, 'uint8');
pixOut d = zeros(numPixelsPerFrame, 1, 'uint8');

DOut = false(numPixelsPerFrame,1);
FOut = false(numPixelsPerFrame,1);
LOut = false(numPixelsPerFrame,1);
ctrl = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1l);

for p = l:numPixelsPerFrame
[pixel d(p),ctrl(p)] = CameraLinkToVisionHDL(pixel(p),F(p),L(p),D(p));
[pixOut(p),ctrlOut(p)] = Invert(pixel d(p),ctrl(p));
[pixOut _d(p),FOut(p),LOut(p),DOut(p)] = VisionHDLToCameraLink(pixOut(p),ctrlOut(p));
end

View Results
The resulting vectors represent this inverted 2-by-3, 8-bit grayscale frame. In the figure, the active

image area is in the dashed rectangle, and the inactive pixels surround it. The pixels are labeled with
their grayscale values.
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225 195 165
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If you have a DSP System Toolbox™ license, you can view the vectors as signals over time using the
Logic Analyzer. This waveform shows the pixelcontrol and Camera Link control signals, the
starting pixel values, and the delayed pixel values after each operation.
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See Also
pixelcontrolsignals | pixelcontrolstruct

More About

. “Streaming Pixel Interface” on page 1-2
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Integrate Vision HDL Blocks Into Camera Link System

This example shows how to design a Vision HDL Toolbox algorithm for integration into an existing
system that uses the Camera Link® signal protocol.

Vision HDL Toolbox™ blocks use a custom streaming video format. If you integrate Vision HDL
Toolbox algorithms into existing design and verification code that operates in a different streaming
video format, you must convert the control signals at the boundaries. The example uses custom
System objects to convert the control signals between the Camera Link format and the Vision HDL
Toolbox pixelcontrol format. The model imports the System objects to Simulink® by using the
MATLAB System block.

Structure of the Model

This model imports pixel data and control signals in the Camera Link format from the MATLAB®
workspace. The CameraLink InvertImage subsystem is designed for integration into existing
systems that use Camera Link protocol. The CameralLink InvertImage subsystem converts the
control signals from the Camera Link format to the pixelcontrol format, modifies the pixel data
using the Lookup Table block, and then converts the control signals back to the Camera Link format.
The model exports the resulting data and control signals to workspace variables.

w  pinOut

d

pixln

p{ FOut

h 4
[x
ha

Fin

e LOut

¥
[
L

Lin

¥

4 4 p{ DOut

Din

el

CameraLink_Invertimage

Structure of the Subsystem

The CameralLink2VHT and VHT2CameralLink blocks are MATLAB System blocks that point to custom
System objects. The objects convert between Camera Link signals and the pixelcontrol format
used by Vision HDL Toolbox blocks and objects.

You can put any combination of Vision HDL Toolbox blocks into the middle of the subsystem. This
example uses an inversion Lookup Table.

You can generate HDL from this subsystem.
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blocks do not need to know the sizeformat of the frame
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Import Data in Camera Link Format

Camera Link consists of three control signals: F indicates the valid frame, L indicates each valid line,
and D indicates each valid pixel. For this example, the input data and control signals are defined in
the InitFcn callback. The vectors describe this 2-by-3, 8-bit grayscale frame. In the figure, the
active image area is in the dashed rectangle, and the inactive pixels surround it. The pixels are
labeled with their grayscale values.

FIn = logical([o0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
LIn = logical([®0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]1);
DIn = logical([®,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,01);
pixIn = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,01);

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox format. This
example uses the object designed in the “Convert Camera Control Signals to pixelcontrol Format” on
page 1-24 example.

The object converts the control signals, and then creates a structure that contains the new control
signals. When the object is included in a MATLAB System block, the block translates this structure
into the bus format expected by Vision HDL Toolbox blocks. For the complete code for the System

object, see CAMERALINKtoVHT Adapter.m.

Create a MATLAB System block and point it to the System object.

i -

Block Parameters: MATLAR System @
MATLAB System

Implement block using a System object. Specify the class name.

System object name: CAMERALINKtoWVHT _Adapter - |"'._='||| |E,_,:l Hew v|

o ok || cancel || Help |
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Design Vision HDL Toolbox Algorithm

Select Vision HDL Toolbox blocks to process the video stream. These blocks accept and return a
scalar pixel value and a pixelcontrol bus that contains the associated control signals. This
standard interface makes it easy to connect blocks from the Vision HDL Toolbox libraries together.

This example uses the Lookup Table block to invert each pixel in the test image. Set the table data to
the reverse of the uint8 grayscale color space.

i =

Block Parameters: Lockup Table @
Lockup Table

Specifies a one-to-one correspondance between the input pixel and
ouput pixel according to table contents,

FParameters

Tahle data: uint8(linspace(255,0,2567)|

(4 ]| Cancel || Help || Apply

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera Link format.
This example uses the object designed in the “Convert Camera Control Signals to pixelcontrol
Format” on page 1-24 example.

The object accepts a structure of control signals. When you include the object in a MATLAB System
block, the block translates the input pixelcontrol bus into this structure. Then it computes the
equivalent Camera Link signals. For the complete code for the System object, see
VHTtoCAMERALINKAdapter.m.

Create a second MATLAB System block and point it to the System object.
View Results

Run the simulation. The resulting vectors represent this inverted 2-by-3, 8-bit grayscale frame. In the
figure, the active image area is in the dashed rectangle, and the inactive pixels surround it. The pixels
are labeled with their grayscale values.
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If you have a DSP System Toolbox™ license, you can view the signals over time using the Logic
Analyzer. Select all the signals in the CameralLink InvertImage subsystem for streaming, and open
the Logic Analyzer. This waveform shows the input and output Camera Link control signals and pixel
values at the top, and the input and output of the Lookup Table block in pixelcontrol format at the
bottom. The pixelcontrol busses are expanded to observe the boolean control signals.
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For more info on observing waveforms in Simulink, see “Inspect and Measure Transitions Using the
Logic Analyzer” (DSP System Toolbox).

Generate HDL Code for Subsystem
To generate HDL code you must have an HDL Coder™ license.

To generate the HDL code, use the following command.

makehdl('CameraLinkAdapterEx/CameraLink InvertImage')

You can now simulate and synthesize these HDL files along with your existing Camera Link system.

See Also

More About

. “Streaming Pixel Interface” on page 1-2
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Configure Blanking Intervals

2-2

Streaming video protocols have two blanking intervals: horizontal and vertical. The horizontal
blanking interval is the period of inactive cycles between the end of one line and the beginning of the
next line. The vertical blanking interval is the period of inactive lines between the end of a frame and
the beginning of the next frame.

In this frame diagram, the blue shaded areas to the left and right of the active frame indicate the
horizontal blanking interval. The orange shaded areas above and below the active frame indicate the
vertical blanking interval.

Total pixels per line

- -

Starting active line j

A

Active pixels per line

Back <€ - Front
Porch Act Ive Porch
|

Video

Total video lines

Active video lines

Y

Ending active line J

In the Frame To Pixels block, the horizontal blanking interval is equal to Total pixels per line -
Active pixels per line or, equivalently, Front porch + Back porch. The vertical blanking interval is
equal to Total video lines - Active video lines or, equivalently, Starting active line + Ending
active line - Active video lines.

For example, the Frame To Pixels block whose parameters are shown in this image has a horizontal
blanking interval of 140 pixels and a vertical blanking interval of 80 lines.



Configure Blanking Intervals
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A streaming video format must have a long enough blanking interval so that the operation on the
previous line or frame completes before the next line or frame starts. An inadequate horizontal or
vertical blanking interval results in corrupted output frames. Standard streaming video formats use a
horizontal blanking interval of about 25% of the line width. This interval is much larger than the
delay of a typical operation. However, when you use a custom video format, you must include
blanking intervals that accommodate the length of the operations in your design.

In these waveform diagrams, the top signal shows the state of the pixel stream for two lines of a
frame. The shaded area represents the horizontal blanking interval between lines. The bottom signal
shows the state of the block performing an operation on the pixel stream. The busy state indicates
when the block is processing a line, and the idle state indicates when the block is available to start
working on a new line. The first pair of signals shows a scenario where the block finishes working on
the first active line before the second line begins. This blanking interval is long enough to ensure
correct output frames, because the block is available to start work on the second line when it arrives.
The second pair of signals shows a scenario where the block is still working on the first active line
when the second line begins. The output of the block is corrupted in the second case, because the
block misses the beginning of the second line.
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The time an operation takes to complete after the end of the line is often dependent on the kernel size
of the operation. For instance, algorithms that use line buffers and apply padding pixels to the edge of
the frame require at least Kw cycles between lines, where Kw is the width of the kernel. An algorithm
might also have pipeline delays from the kernel operation after the buffer. These delays can be
related or unrelated to the kernel size, and can be greater or smaller than the line buffer delays. The
processing time of each operation depends on the line buffer pipelining and on the kernel operation
pipelining. The blanking interval must be long enough to accommodate the longer of these two
delays. When you use multiple blocks in a processing chain, the blanking interval must accommodate
the block with the longest delay.

The recommended minimum horizontal blanking interval is 2xKw when using padding or 12 cycles
when you set the Padding method parameter to None. This interval includes some margin for longer
kernel processing times on top of the line buffer delay.

The recommended vertical blanking interval is at least the height of the kernel, Kh lines. The line
buffer requires this interval whether or not the operation uses padding.

Troubleshoot Blanking Interval Problems

When the blanking interval is too small, you might see:

* Blank output frames
» Partial output frames

* Corrupted pixel stream control signal patterns (for instance, missing VEnd or hEnd signals, or
duplicate End or Start signals)

* That the algorithm works with continuous valid input pixels on each line, but not when gaps exist
between valid pixels in a line

* That the algorithm works in Simulink but fails in HDL simulation

Vision HDL Toolbox library blocks model hardware pipeline stages as a latency applied at the output.
In the corresponding HDL implementations, the pipeline stages are distributed across the calculation.
This difference means that for a given cycle, a block can be in a busy state in HDL simulation but
appear idle in Simulink. When the blanking period is too short, this difference can cause the
generated HDL test bench to show mismatches between Simulink and HDL signals, especially on the
output control signals.

If you see any of these symptoms, increase your horizontal and vertical blanking intervals to 25% of
the active frame dimensions and rerun the simulation. If this step confirms that a too-small blanking
interval is causing your symptoms, you can fine tune the intervals.
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One way to diagnose blanking interval problems in Simulink is to use the Measure Timing block to
observe the dimensions of the pixel stream before and after your operation. Inadequate blanking
intervals cause the block to corrupt the control signals. In these cases, the output frames show
different dimensions than the input frames.

This model shows an Image Filter block configured with a 12-by-12 filter kernel and edge padding
enabled. The pixel stream format is a custom format that has only 8 horizontal blanking pixels, as
shown by the Measure Timing block on the input stream. Because the horizontal blanking interval is
smaller than the kernel width, the output frame is blank. The Measure Timing block on the output of
the filter shows corruption of the format.

4 Filter = m} X
File Tools View Simulation Help o
uintd uintd uints [240x32(
pixgl ———— W pixel pixel P pixel frame f———
. Image Filter .
ixelcontrol pixelcontrol gar
ol == P - ctrl ot e P > cirl validOout
Image Filter
- double [Tagg - dou:lc/ag\w
activePixels ——p[ - activePixels > J
double | doubl "
activeLines —{[__ 240 activeLines »
double | doub
totalPixels B totalPixels pi| 7277
ctrlin MeasureTiming double — i ctrlin MeasureTiming double =
totallines —b totalLines >
double | doub
harizBlank —b herizBlank I
double [ | doubl : =
vertBlank —I* vertBlank » J eady 240x320 T=0.000
Measure Timing1 Measure Timing \/

You can also see the corruption by looking at the output control signals in the Logic Analyzer app.
The waveform shows the input and output signals of the Image Filter block. The red arrows indicate
missing hStart signals and a different pattern on the output valid signal from the block.

»Frame Ti o { | {
¥Frame T | B (D B S B B SN D B (B BN BN B D S
hStart 1
hEnd
vStart
vEnd
valid
»Image Filter:1

¥image Filter-2
—  hStart
— hEnd
—  wvStart
— vEnd
—  wvahd

This model shows an Edge Detector block configured to use the 3-by-3 Sobel filter kernel and with
edge padding enabled. This pixel stream format has only two horizontal blanking pixels, as shown by
the Measure Timing block on the input stream. In this case, the output frame includes only every
second line. The Measure Timing block on the output of the filter shows the corruption of the format.
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You can also see the corruption by looking at the output control signals in the Logic Analyzer app.
The waveform shows the input and output signals of the Edge Detector block. The red circle indicates
missing hStart and hEnd signals, and the red arrow indicates a different pattern on the output
valid signal from the block.

hStart
hEnd
viStart
vEnd
valid

Edge Detector:
¥ Edge Detector:2
hStart
hEnd
vStart
=l
valid

If you modify the input format to have a horizontal blanking interval of 3 pixels, this model returns
the correct output frames in Simulink. However, when you run the generated HDL test bench, the
test bench reports mismatches between the signals captured in Simulink and the signal behavior in
HDL. This image of the test bench log highlights the mismatch in the output hEnd and vEnd signals.
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EFRCR in Out2 hStart at time 781920 : Expected '0' fActual "1°
EFRCE in Cutl at time 781920 : Expected "0" Actual "1’

ERROR in Cut2 wvalid at time 781520 : Expected '0' Actual "1
EFROR in Cut2 hStart at time 781930 : Expected '1' Actual "07
in Cutl at time 34750 : Expected "1" Rcotual '0°7

EERCOE in Outl at time 784990 : Expected "0" Rctual '1°
EFRCOE in Outl at time 785100 : Expected "1" Actual '0°
EFRCR in Out2 walid at time 785100 : Expected "1" Actual '0°
EFRCR in Cutd walid at time 785110 : Expected '1" Actual '0°

LA = s

o
o
o
o
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%
=]
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=TTt 785110 : Expected '1" Actual '0°
in Cutd vEnd at time 785120 : Expected '1' Actual '07
in Cuti_hEnd at time 785120 @ Expected '1' Actual '07

# ERROR 1T ourr—sr—cim 785120 : Expected "1" Rctual '0°7
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This waveform from the simulation of the HDL test bench shows that the hEnd and vEnd signals at
the end of the first frame are missing. The blue signals are the expected output as captured from the
Simulink simulation. The red signals are the output of the algorithm in the HDL simulation. The red
arrows indicate where the expected control signal pulses are missing.

4, HDL_Algorithm_thfu_HDL_Algorithm/Out?_hStart
4 HDL_Algorithm_thfOut?_hStart_ref

4, HDL_Algorithm_thfu_HDL_Algorithm,/Out?_hEnd
4 JHDL_Algorithm_th/Out2_hEnd_ref

4, MHDL_Algorithm_thfu_HDL_Algorithm/Out?_vStart

4 MHDL_Algorithm_thfOut?_vStart_ref

4, HDL_Algorithm_thfu_HDL_Algarithm,/Out?_vEnd
4. MDL_Algorithm_thfOut2_vEnd_ref

#,. MHOL_Algorithm_thfu_HDL_Algorithm,/Out2_valid
4. MHDL_Algorithm_thfOut2_valid_ref

To fix the Image Filter model and the Edge Detector model, set the horizontal blanking interval to at
least 2xKw pixels, where Kw is the width of the filter kernel. For the Image Filter model, set this
value to at least 24 pixels. For the Edge Detector model, set this value to at least 8 pixels.

See Also
Frame To Pixels | Measure Timing

More About

. “Streaming Pixel Interface” on page 1-2
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Edge Padding

2-8

To perform a kernel-based operation such as filtering on a pixel at the edge of a frame, Vision HDL
Toolbox algorithms pad the edges of the frame with extra pixels. These padding pixels are used for
internal calculation only. The output frame has the same dimensions as the input frame. The padding
operation assigns a pattern of pixel values to the inactive pixels around a frame. Vision HDL Toolbox
algorithms provide padding by constant value, replication, or symmetry.

Some blocks and System objects also support opting out of setting the padding pixel values. This
option reduces the hardware resources used by the block and the blanking required between frames
but affects the accuracy of the output pixels at the edges of the frame.

The diagrams show the top-left corner of a frame, with padding added to accommodate a 5-by-5 filter
kernel. When computing the filtered value for the top-left active pixel, the algorithm requires two
rows and two columns of padding. The edge of the active image is indicated by the double line.

Type of Padding |Description Diagram

Constant Each added pixel is assigned the same value. |In the diagram, C is the constant
On some blocks and System objects you can |value assigned to the inactive
specify the constant value. The value 0, pixels around the active frame.

representing black, is a reserved value in
some video standards. Choosing a small

number, such as 16, as a near-black padding

value, is common. C C C C C

C C | 120 | 1p0 | 180




Edge Padding

Type of Padding

Description

Diagram

Replicate

The pixel values at the edge of the active
frame are repeated to make rows and
columns of padding pixels.

The diagram shows the pattern
of replicated values assigned to
the inactive pixels around the
active frame.

120 | 120 120

150 | 1

Symmetric

The padding pixels are added such that they
mirror the edge of the image.

The diagram shows the pattern
of symmetric values assigned to
the inactive pixels around the
active frame. The pixel values
are symmetric about the edge of
the image in both dimensions.

150 | 120 | 120

150 | 18

150 | 120 120

150 | 18
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Type of Padding

Description

Diagram

None

This option excludes padding logic. The line
buffer does not set the pixels outside the
image frame to any particular value. The
kernel calculation uses the current value in
the line buffer. To maintain pixel stream
timing, the output frame is the same size as
the input frame. However, to avoid using
pixels calculated from undefined padding
values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream
operations.

Excluding padding can useful for applications
that meet any of these conditions.

* The output video stream does not need to
maintain physical timing.

* The resulting image is not displayed. For
example, finding the location of objects in
an image.

» The information of interest is always in
the center of the image.

For an example, see “Increase Throughput
with Padding None” on page 2-11.

The diagram shows the
undefined values of the inactive
pixels around the active frame.

Padding requires minimum horizontal and vertical blanking periods. This interval gives the algorithm
time to add and store the extra pixels. The blanking period, or inactive pixel region, must be at least
KernelWidth pixels horizontally and KernelHeight lines vertically.

When you set the Padding method to None, the horizontal blanking period must have at least 6
pixels of front porch and 6 pixels of back porch. For the Median Filter block with the Padding

method set to None, the horizontal blanking must have at least 10 pixels of front porch and 10 pixels
of back porch. The vertical blanking still must be KernelHeight lines.

See Also

Image Filter | visionhdl.ImageFilter

More About

. “Streaming Pixel Interface” on page 1-2




Increase Throughput with Padding None

Increase Throughput with Padding None

This example shows how to reduce latency and save hardware resources by not adding padding pixels
at the edge of each frame.

Most image filtering operations pad the image to fill in the neighborhoods for pixels at the edge of the
image. Padding can help avoid border artifacts in the output image. In a hardware implementation,
the padding operation uses extra resources and introduces extra latency.

Vision HDL Toolbox™ blocks that perform neighborhood processing with padding require horizontal
blanking that is twice the kernel width. This behavior means that larger filter sizes result in a longer
blanking requirement. Excluding the padding by setting the Padding method parameter to None
enables you to use a smaller period of horizontal blanking. Without padding, the horizontal blanking
requirement is independent of the image resolution and kernel size.

This example includes two models. The first model shows how to use this option with library blocks,
and the second model demonstrates using it when constructing algorithms that use the Line Buffer
block. This example also explains some design considerations when you do not use padding.

Use of Library Blocks with Padding None

This example model shows how to use padding none with a predefined algorithm from Vision HDL
Toolbox libraries. This model includes an Image Filter block configured for an n-by-n blur filter and
with its Padding method parameter set to None. You can change the size of the filter kernel by
changing the value of n in the workspace. The model opens with n set to 15.

When using edge padding, most blocks have floor(KernelHeight/2) lines of latency and require
2*KernelWidth cycles of horizontal blanking. When you omit padding, most blocks require only 12
cycles of horizontal blanking. Because the internal line buffer latency no longer depends on the
kernel size, this blanking interval accommodates any kernel size.

To show the reduced blanking requirements of using Padding method set to None, the Frame To
Pixels block is configured for a custom 240p format that uses only 12 cycles of combined front and
back porch.

When you run the model, it shows these three figures.

* Input Video -- Original 240p input video.

* Padding None Full Frame -- Output video from the filter without padding, showing border
artifacts.

* Padding None ROI -- Output video from the filter without padding, with border pixels trimmed
from the edges of the frame. The frame size is smaller than the size of the input video.
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In the Padding None Full Frame viewer, shown, a dark border is visible around the edge of each
frame. This effect is because, without padding pixels, the filter neighborhoods are not fully defined at
the edges of the frame. Output from a filter that has padding pixels does not show any border
artifacts because the padding logic ensures that the edge neighborhoods are fully defined.

Removing or masking off these border pixels from nonpadded output before further analysis is
common. Border artifacts can decrease the accuracy of subsequent processing. For example, these
artifacts can affect the statistical distribution of the overall image. Vision HDL Toolbox blocks return
the border pixels for nonpadded images to maintain the input and output timing. The values of these
pixels are undefined and cannot be assumed to have any particular relation to the surrounding pixels.

The ROI Selector block removes floor (KernelHeight/2) and floor (KernelWidth/2) pixels
from the edges of each frame. The Padding None ROI viewer, shown, shows the video with the border
artifacts removed. The resulting frame for a 15-by-15 kernel is 225-by-305 pixels in size, reduced
from 240-by-320 pixels.
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Use of Line Buffer Block with Padding None

This model shows how to design algorithms by using a Line Buffer with the Padding method
parameter set to None. This model contains a Padding None subsystem, and a Padding Symmetric
subsystem.

The Frame To Pixels block connected to the Padding Symmetric subsystem uses the standard 240p
format. The standard horizontal blanking (combined front and back porch) is 82 cycles. Increasing
the resolution increases the blanking interval.For example, the 1080p format has 280 idle cycles
between lines.

The Frame To Pixels block connected to the Padding None subsystem implements a custom 240p
format that uses only 12 cycles of combined front and back porch, the same as in the Image Filter
model shown earlier.

This model implements a 15-by-15 Gaussian filter, with a large standard deviation, by using the Line
Buffer block.

When you run the model, it shows three figures:

* Input Video -- Original 240p input video.

* Padding None ROI -- Output video from the filter without padding, with border pixels trimmed
from the edges of the frame. The frame size is smaller than the size of the input video.

* Padding Symmetric -- Output video from the filter with symmetric padding. This video is full size
but has no edge effects because the padding bits define the neighborhoods around the edge pixels.
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pixelcontrol Delay Balancing

When you construct algorithms that use the Line Buffer block, you must delay-balance the
pixelcontrol bus to account for the kernel latency. When you use padding, the Line Buffer returns
shiftEnable set to 1 for floor (KernelWidth/2) cycles before hStart and after hEnd. The delay-
balancing logic uses this extended shiftEnable signal to control the delay registers for the
pixelcontrol signals. You can see this logic in the Padding Symmetric/pixelctridelay subsystem.

When you set Padding method to None, the Line Buffer returns shiftEnable to 1 between hStart
and hEnd. The delay-balancing logic must use the clock, instead of shiftEnable, to control the delay
registers for hEnd, vEnd, and valid. The valid signal must also respond to shiftEnable being set to
0 during a line, which can occur when interfacing with external memory. The valid signal must also
be set to 1 on the last pixel of the line, to match with with hEnd and vEnd. To meet both
requirements, the delay-balancing logic delays the valid signal by using a register enabled by
shiftEnable, and uses a Unit Delay Enabled block to set the valid signal to 1 with hEnd at the end of
the line. The Padding None/pixelctrldelay subsystem shows this logic.
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Excluding padding logic enables you to achieve higher throughput by using a video format with
reduced horizontal blanking. This option also reduces hardware resource usage. However, your
design must account for the border artifacts later in the processing chain. When you use the Line
Buffer block, you must delay the pixelcontrol bus to match the kernel latency by using control
logic that accounts for the modified behavior of the shiftEnable output signal. Using this example as
a starting point, you can design algorithms and systems that achieve higher throughput by excluding

padding logic.
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Gamma Correction

This example shows how to model pixel-streaming gamma correction for hardware designs. The
model compares the results from the Vision HDL Toolbox™ Gamma Corrector block with the results
generated by the full-frame Gamma block from Computer Vision System Toolbox™.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx™ Zyng™ reference design. See “Gamma Correction with Zyng-Based
Hardware” (Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware).

Structure of the Example

The Computer Vision System Toolbox product models at a high level of abstraction. The blocks and
objects perform full-frame processing, operating on one image frame at a time. However, FPGA or
ASIC systems perform pixel-stream processing, operating on one image pixel at a time. This example
simulates full-frame and pixel-streaming algorithms in the same model.

The GammaCorrectionHDL.slx system is shown below.

Gamma Correction |

S ourcs Cornupticn Full-Frame Gamma

— pixelin pixelOut

| ctrlin ot Ot = —r—]

Pixel-Stream Gamma
Compensation
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The difference in the color of the lines feeding the Full-Frame Gamma Compensation and Pixel-
Stream Gamma Compensation subsystems indicates the change in the image rate on the
streaming branch of the model. This rate transition is because the pixel stream is sent out in the same
amount of time as the full video frames and therefore it is transmitted at a higher rate.

In this example, the Gamma correction is used to correct dark images. Darker images are generated
by feeding the Video Source to the Corruption block. The Video Source outputs a 240p grayscale
video, and the Corruption block applies a De-gamma operation to make the source video
perceptually darker. Then, the downstream Full-Frame Gamma Compensation block or Pixel-
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Stream Gamma Compensation subsystem removes the previous De-gamma operation from the
corrupted video to recover the source video.

One frame of the source video, its corrupted version, and recovered version, are shown from left to
right in the diagram below.

u Source Image View EI@ u Corrupted Image View EI@ u HOL Viewer EI@
File Tools View Simulation Help k] File Tools View Simulation Help L] File Tools View Simulation Help L]
& Ok |aa 7| o &0 Ok aa | S B Ok aa |

(O ORR:cr T Wik @ | e (O O P

Running

240320 T=1693224.000 Running 240320 T=1693224.000 Running 1:240x320 T=1693224.000

It is a good practice to develop a behavioral system using blocks that process full image frames, the
Full-Frame Gamma Compensation block in this example, before moving forward to working on an
FPGA-targeting design. Such a behavioral model helps verify the video processing design. Later on, it
can serve as a reference for verifying the implementation of the algorithm targeted to an FPGA.
Specifically, the lower PSNR (peak signal-to-noise ratio) block in the Result Verification section at
the top level of the model compares the results from full-frame processing with those from pixel-
stream processing.

Frame To Pixels: Generating a Pixel Stream

The task of the Frame To Pixels is to convert a full-frame image to pixel stream. To simulate the
effect of horizontal and vertical blanking periods found in real life hardware video systems, the active
image is augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:
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Function Block Parameters: Frame To Pixels + X
Frame To Pixels {mask) (link)

Converts a full frame image to pixel stream.
Parameters

Mumber of components: |1

Video format:
240p =

Video Format Parameters

Active pixels per line: 320 Active video lines: 240
Total pixels per line: 402 Total video lines: 324
Starting active line: 1 Ending active line: 240
Front porch: 44 Back porch: 38

Total pixels per line

Starting active line j

Active pixels per line

E Back < " Front
= Porch E Act ive Porch
—g  ~ef— | 8 .  f—
z 2] Video
5 >
2 E

<y

Ending active line J

oK Cancel Help

The Number of components field is set to 1 for grayscale image input, and the Video format field
is 240p to match that of the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the dark image from
the upstream Corruption block. Six other parameters, namely, Total pixels per line, Total video
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lines, Starting active line, Ending active line, Front porch, and Back porch specify how many
non-image data will be augmented on the four sides of the Active Video. For more information, see
the Frame To Pixels block reference page.

Note that the sample time of the Video Source is determined by the product of Total pixels per line
and Total video lines.

Gamma Correction

As shown in the diagram below, the Pixel-Stream Gamma Compensation subsystem contains only
a Gamma Corrector block.

L1} ¥ pixel pixal —F‘
pixelin Gamma pizelOut
ctriCut

The Gamma Corrector block accepts the pixel stream, as well as a bus containing five
synchronization signals, from the Frame To Pixels block. It passes the same set of signals to the
downstream Pixels To Frame block. Such signal bundle and maintenance are necessary for pixel-
stream processing.

Pixels To Frame: Converting Pixel Stream Back to Full Frame

As a companion to Frame To Pixels that converts a full image frame to pixel stream, the Pixels To
Frame block, reversely, converts the pixel stream back to the full frame by making use of the
synchronization signals. Since the output of the Pixels To Frame block is a 2-D matrix of a full
image, there is no need to further carry on the bus containing five synchronization signals.

The Number of components field and the Video format fields of both Frame To Pixels and Pixels
To Frame are set at 1 and 240p, respectively, to match the format of the video source.

Image Viewer and Result Verification

When you run the simulation, three images will be displayed (refer to the images shown in the
"Structure of the Example" Section):

* The source image given by the Image Source subsystem

* The dark image produced by the Corruption block

* The HDL output generated by the Pixel-Stream gamma Compensation subsystem

The presence of the four Unit Delay blocks on top level of the model is to time-align the 2-D matrices
for a fair comparison.

While building the streaming portion of the design, the PSNR block continuously verifies the
HDLOut results against the original full-frame design BehavioralOQut. During the course of the
simulation, this PSNR block should give inf output, indicating that the output image from the Full-
Frame Gamma Compensation matches the image generated from the stream processing Pixel-
Stream Gamma Compensation model.
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Exploring the Example

The example allows you to experiment with different Gamma values to examine their effect on the

Gamma and De-gamma operation. Specifically, a workspace variable gammal’alue with an initial
value 2.2 is created upon opening the model. You can modify its value using the MATLAB command
line as follows:

gammaValue=4

The updated gammal’alue will be propagated to the Gamma field of the Corruption block, the
Full-Frame Gamma Compensation block, and the Gamma Corrector block inside Pixel-Stream

Gamma Compensation subsystem. Closing the model clears g@mmaV alue from your workspace.

Although Gamma operation is conceptually the inverse of De-gamma, feeding an image to Gamma
followed by a De-gamma (or De-gamma first then Gamma) does not necessarily perfectly restore the
original image. Distortions are expected. To measure this, in our example, another PSNR block is
placed between the SourceImage and BehavioralOut. The higher the PSNR, the less distortion has
been introduced. Ideally, if HDL output and the source image are identical, PSNR outputs inf. In our

example, this happens only when gammal alue equals 1 (i.e., both Gamma and De-gamma blocks
pass the source image through).

We can also use Gamma to corrupt a source image by making it brighter, followed by a De-gamma
correction for image recovery.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:
makehdl('GammaCorrectionHDL/Pixel-Stream Gamma Compensation')

To infer a RAM to implement a lookup table used in the Gamma Corrector, the
LUTRegisterResetType property is set to none. To access this property, right click the Gamma
Corrector block inside Pixel-Stream Gamma Compensation, and navigate to HDL Coder -> HDL
Block Properties ...

To generate test bench, use the following command:

makehdltb('GammaCorrectionHDL/Pixel-Stream Gamma Compensation')
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Histogram Equalization

This example shows how to use the Vision HDL Toolbox Histogram library block to implement
histogram equalization.

This example model provides a hardware-compatible algorithm. You can generate HDL code from this
algorithm, and implement it on a board using a Xilinx™ Zyng™ reference design. See “Histogram
Equalization with Zyng-Based Hardware” (Computer Vision Toolbox Support Package for Xilinx Zynq-
Based Hardware).

Introduction

The model shows how to use the Histogram library block to enhance the contrast of images by
applying the histogram equalization. To learn more, refer to the Histogram block reference page.
There are three components in this histogram equalization example.

* Video Partition partitions a big image into four non-overlapping small images for parallel
histogram computation.

* HDLHistogram computes the accumulated histogram of the image.
* Equalization applies the equalized histogram to the original image and generates the contrast-

enhanced image.
Histogram Equalization I
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Video Partition

There are use cases where histogram is computed over an entire image, or over small regions-of-
interest representing sections of the image. Computing histogram of a big image is time consuming.
The video partition component in this example divides a big image into four non-overlapping small
images. Histogram is computed over the four small images simultaneously. Each input frame is
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partitioned into four 120 by 160 small images. Each small image is connected to a Frame To Pixels
block to generate pixel streams and corresponding control signals.
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HDLHistogram

HDLHistogram subsystem is optimized for HDL code generation. The histogram of the pixel streams
is computed using the Vision HDL Toolbox Histogram library block. Because the input image is grey
scale with data type uint8, the input pixels are grouped into 256 bins. The model reads the calculated
histogram bins sequentially once the block asserts the readRdy signal. The bin values are sent for
cumulative histogram calculation. After all 256 bin values are read, the model asserts binReset to
reset all bins to zero. The collected histogram of each small image is then added together to compute
the accumulated histogram of the big image.
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The timing diagram of reading and resetting the histogram bins is shown in the following figure.

Histogram Equalization

Eile Edit View Playback Help
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Processing

Equalization

Histogram equalization can be applied to the current frame where the accumulated histogram was
calculated, or the frame after. If applying to the current frame, the input video needs to be stored.
This example delays the input video by one frame and performs uniform equalization to the original
video. The equalized video is then compared with the original video.
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HDL Code Generation

The HDL code generated from the Histogram was synthesized using Xilinx ISE on a Virtex6
(XC6VLX240T-1FFG1156) FPGA, and the circuit ran at about 190 MHz, which is sufficient to process
the data in real time.

To check and generate HDL code of this example, you must have an HDL Coder™ license.
You can use the commands

makehdl('HistogramEqualizationHDL/HDLHistogram")

or

makehdltb('HistogramEqualizationHDL/HDLHistogram"')

to generate HDL code and test bench for the HDLHistogram subsystem. Note: Test bench generation
takes a long time due to the large data size. Consider reducing the simulation time before generating
the test bench.
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Edge Detection and Image Overlay

This example shows how to detect and highlight object edges in a video stream. The behavior of the
pixel-stream Sobel Edge Detector block, video stream alignment, and overlay, is verified by
comparing the results with the same algorithm calculated by the full-frame blocks from the Computer
Vision Toolbox™.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on

a board using a Xilinx™ Zynq™ reference design. See “Developing Vision Algorithms for Zyng-Based
Hardware” (Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware).

Structure of the Example

The EdgeDetectionAndOverlayHDL.slx system is shown below.

Edge Detection and Image Overlayl

| " B I Clut = 1 1

Full-Frame Behavioral kade |2
pizel | pixelin pxal Out e pixel frar

cirl == chrin cirlOut = ctrd flidOut ——]

Pixel-Stream HOL Model

|l-l'| Caopyright 2015 The Math\Works, Inc.

The difference in the color of the lines feeding the Full-Frame Behavioral Model and Pixel-Stream
HDL Model subsystems indicates the change in the image rate on the streaming branch of the
model. This rate transition is because the pixel stream is sent out in the same amount of time as the
full video frames and therefore it is transmitted at a higher rate.

Full-Frame Behavioral Model

The following diagram shows the structure of the Full-Frame Behavioral Model subsystem, which
employs the frame-based Edge Detection block.

2-25



2 HDL-Optimized Algorithm Design

b[:EEEE::::E*————F-+

Y

I Sobel Edge

o

Video |
‘Wiewer

Crvarlay

|Irnaga

o Video |
il Image ‘Wiewer

Edges

o Video |
il Image ‘Wiewer

Crriginal

Given that the frame-based Edge Detection block does not introduce latency, image overlay is
performed by weighting the source image and the Edge Detection output image, and adding them
together in a straightforward manner.

One frame of the source video, the edge detection result, and the overlaid image are shown from left
to right in the diagram below.
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It is a good practice to develop a behavioral system using blocks that process full image frames, the
Full-Frame Behavioral Model subsystem in this example, before moving forward to working on an
FPGA-targeting design. Such a behavioral model helps verify the video processing design. Later on, it
can serve as a reference for verifying the implementation of the algorithm targeted to an FPGA.
Specifically, the PSNR (peak signal-to-noise ratio) block at the top level of the model compares the
results from full-frame processing with those from pixel-stream processing.

Frame To Pixels: Generating a Pixel Stream

The task of the Frame To Pixels is to convert a full frame image to pixel stream. To simulate the
effect of horizontal and vertical blanking periods found in real life hardware video systems, the active
image is augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:
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Function Block Parameters: Frame To Pixels

Frame To Pixels {mask) (link)

Parameters

Mumber of components: |1

Video format:
240p

Video Format Parameters

Active pixels per line: 320

Total pixels per line: 402
Starting active line: 1
Front porch: 44

Converts a full frame image to pixel stream.

Active video lines:
Total video lines:
Ending active line:
Back porch:

Total pixels per line

240

324

240
38

Starting active line j

A

Active pixels per line

Back
Porch

Tatal video lines

Active video lines

Y

Active
Video

Front
Porch

Ending active line J

oK Cancel Help

The Number of components field is set to 1 for grayscale image input, and the Video format field
is 240p to match that of the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the dark image from
the upstream Corruption block. Six other parameters, namely, Total pixels per line, Total video

2-27



2 HDL-Optimized Algorithm Design

2-28

lines, Starting active line, Ending active line, Front porch, and Back porch specify how many
non-image data will be augmented on the four sides of the Active Video. For more information, see
the Frame To Pixels block reference page.

Note that the sample time of the Video Source is determined by the product of Total pixels per line
and Total video lines.

Pixel-Stream Edge Detection and Image Overlay

The Pixel-Stream HDL Model subsystem is shown in the diagram below. You can generate HDL
code from this subsystem.
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pixelln  pixelCut | refFixel
cirlOut :}
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Edge Detection Image Overlay

Due to the nature of pixel-stream processing, unlike the Edge Detection block in the Full-Frame
Behavioral Model, the Edge Detector block from the Vision HDL Toolbox™ will introduce latency.
The latency prevents us from directly weighting and adding two images to obtain the overlaid image.
To address this issue, the Pixel Stream Aligner block is used to synchronize the two pixel streams
before the sum.

To properly use this block, refPixel and refCtrl must be connected to the pixel and control bus that
are associated with a delayed pixel stream. In our example, due to the latency introduced by the
Edge Detector, the pixel stream coming out of the Edge Detector is delayed with respect to that
feeding into it. Therefore, the upstream source of refPixel and refCtrl are the Edge and ctrl output of
the Edge Detector.

Pixels To Frame: Converting Pixel Stream Back to Full Frame

As a companion to Frame To Pixels that converts a full image frame to pixel stream, the Pixels To
Frame block, reversely, converts the pixel stream back to the full frame by making use of the
synchronization signals. Since the output of the Pixels To Frame block is a 2-D matrix of a full
image, there is no need to further carry on the bus containing five synchronization signals.

The Number of components field and the Video format fields of both Frame To Pixels and Pixels
To Frame are set at 1 and 240p, respectively, to match the format of the video source.

Verifying the Pixel Stream Processing Design

While building the streaming portion of the design, the PSNR block continuously verifies results
against the original full-frame design. The Delay block on the top level of the model time-aligns the 2-
D matrices for a fair comparison. During the course of the simulation, the PSNR block should give
inf output, indicating that the output image from the Full-Frame Behavioral Model matches the
image generated from the stream processing Pixel-Stream HDL Model.
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Exploring the Example

The example allows you to experiment with different threshold and alpha values to examine their
effect on the quality of the overlaid images. Specifically, two workspace variables tfiresfoldV alu:

and @/pha with initial values 7 and 0.8, respectively, are created upon opening the model. You can
modify their values using the MATLAB command line as follows:

thresholdValue=8
alpha=0.5

The updated tfiresholdV alue will be propagated to the Threshold field of the Edge Detection block
inside the Full-Frame Behavioral Model and the Edge Detector block inside Pixel-Stream HDL

Model/Edge Detection. The @/l yalue will be propagated to the Gain1 block in the Full-Frame

Behavioral Model and Pixel-Stream HDL Model/Image Overlay, and the value of 1 — alpha goes
to Gain2 blocks. Closing the model clears both variables from your workspace.

In this example, the valid range of thresholdV alue is between 0 and 256, inclusive. Setting
thresholdV alue equal to or greater than 257 triggers a message Parameter overflow occurred for
‘threshold'. The higher you set the tfiresfioldV alue, the smaller the amount of edges the example
finds in the video.

The valid range of @/ph is between 0 and 1, inclusive. It determines the weights for edge detection
output image and the original source image before adding them. The overlay operation is a linear
interpolation according to the following formula.

overlaid image = alpha*source image + (1l-alpha)*edge image.

Therefore, when @/phit = 0 the overlaid image is the edge detection output, and when @/pfia = 1t
becomes the source image.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('EdgeDetectionAndOverlayHDL/Pixel-Stream HDL Model');

To generate a test bench, use the following command:

makehdltb('EdgeDetectionAndOverlayHDL/Pixel-Stream HDL Model');
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Edge Detection and Image Overlay with Impaired Frame

This example shows how to introduce impairments in order to test a design with imperfect video
input.

When designing video processing algorithms, an important concern is the quality of the incoming
video stream. Real-life video systems, like surveillance cameras or camcorders, produce imperfect
signals. The stream can contain errors such as active lines of unequal length, glitches, or incomplete
frames. In simulation, a streaming video source will usually produce perfect signals. When you use
the Frame To Pixels block from the Vision HDL Toolbox™, all lines are of equal size, and all frames
are complete. A video algorithm that simulates well under these conditions does not guarantee its
effectiveness on an FPGA that connects to a real-world video source. To assess the robustness of a
video algorithm under nonideal real-world video signals, it is practical to introduce impairments in
the pixel stream.

This example extends the “Edge Detection and Image Overlay” on page 2-25 example by manually
masking off the leading control signals of a frame to resemble a scenario where the algorithm starts
in the middle of a frame. Such test scenarios are necessary to prove robustness of streaming video
designs.

It is beneficial to go over the “Edge Detection and Image Overlay” on page 2-25 example before
proceeding to this example.

Structure of the Example

The structure of this example is shown below, which closely follows the structure of the pixel-stream
processing unit of the model in “Edge Detection and Image Overlay” on page 2-25.

Edge Detection and Image Overlay with Impaired Frame
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Copyright 2015 The MathWorks, Inc. Align Video is implemented as a variant subsystem.

To simulate using the FirstVersion variant, type VERSION=1 at MATLAB prompt.
To simulate using the SecondVersion variant, type VERSION=2 at MATLAB prompt.

The Edge Detection subsystem implements a Sobel algorithm to highlight the edge of an image. The
Align Video subsystem is used to synchronize the delayed output of the EdgeDetector with the
original frame. Image Overlay weights and sums up the two time-aligned images.

This material is organized as follows. We first develop an Align Video subsystem that works well with
perfect video signals. Then, we use the Frame Impairment subsystem to mask off the leading
control signals of a frame to resemble a scenario where the algorithm starts in the middle of a frame.
We will see that such impairment makes Align Video ineffective. Finally, a revised version of Align
Video is developed to address the issue.

Align Video is implemented as a variant subsystem. You can use the variable VERSION in workspace
to select which one of the two versions you want to simulate.



Edge Detection and Image Overlay with Impaired Frame

Note: Starting in R2017a the Pixel Stream Aligner block replaces the Align Video subsystem shown
here. This new block makes setting the line buffer size and number of lines much easier and
generates HDL code. In new designs, use the Pixel Stream Aligner block rather than the Align Video
subsystem. For an example of how to use the block, see “Edge Detection and Image Overlay” on page
2-25,

First Version of Align Video

The following diagram shows the structure of the first version of the Align Video subsystem.
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Align Video uses control signals to detect the active region of a frame. For more information on the
streaming pixel protocol, see “Streaming Pixel Interface” on page 1-2.

The basic idea of aligning two pixel streams is to buffer valid pixels that come earlier into a FIFO
based only on valid signals, and appropriately pop individual pixel from this FIFO based on the valid
signal of the delayed pixel-stream.

Test Align Video Using Frame Impairment Subsystem

To illustrate how the Frame Impairment subsystem works, consider a 2-by-3 pixel frame. In the
figure below, this frame is showed in the dashed rectangle with inactive pixels surrounding it.
Inactive pixels include a 1-pixel-wide back porch, a 2-pixel-wide front porch, 1 line before the first
active line, and 1 line after the last active line. Both active and inactive pixels are labeled with their
grayscale values.
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If the Frame To Pixels block accepts this 2-by-3 frame as an input and its settings correspond to the
porch lengths shown above, then the timing diagram of the Frame To Pixels output is illustrated in
the upper half of the following diagram.
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Impaired Frame: 4 Valid Pixels Skipped

The Frame Impairment subsystem skips a configurable number of valid pixels at the beginning of
the simulation. For example, if it was configured to skip 4 pixels of the example frame, the result
would be as in the lower half of the timing diagram. We can see that by skipping 4 valid pixels, the
three valid pixels on the second line (i.e., with intensity values of 30, 60, and 90), and the first valid
pixel on the third line, are masked off, along with their associated control signals. Moreover, the
Frame Impairment subsystem introduces two clock cycle delays. If we enter 0 pixels to skip, it just
delays both pixel and ctrl outputs from Frame To Pixels by two clock cycles.

Double-click the Frame Impairment subsystem and ensure 'Number of valid pixels to skip' is set to
0. As mentioned before, this setting does not impair the frame, all it does is to delay both pixel and
ctrl outputs from Frame To Pixels by two clock cycles. The output from the video output is shown
below, which is expected.
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Now, double-click Frame Impairment again and enter any positive integer number, say 100, in the
'Number of valid pixels to skip' field.

Rerun the model and the resulting video output is shown below.
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We can see that the edge output is at the right place but the original image is shifted. This output
clearly suggests that our first version of Align Video is not robust against a pixel stream that starts
in the middle of a frame.

Two reasons explain this behavior. Firstly, EdgeDetector block starts processing only after seeing a
valid frame start, indicated by hStart, vStart, and valid going high at the same clock cycle. The block
does not output anything for a partial frame. Secondly, the FIFO, inside the Align Video subsystem,
starts buffering the frame once the valid signal is true, whether it is a partial frame or a complete
frame. Therefore, at the start of the second frame, FIFO has been contaminated with the pixels of the
previous partial frame.

Corrected Version of Align Video

Based on the insight gained from the previous section, a revised version of Align Video is shown
below.
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The goal is to only push the pixels of complete frames into the FIFO. If the leading frames are not
complete, their valid pixels are ignored.

To achieve this, an enabled register called lock is used (highlighted in the diagram above). Its initial
value is logical 0. ANDing this 0 with a delayed version of valid always gives logical 0. This prevents
any valid pixels from being pushed into FIFO. The lock toggles its output from logical 0 to 1 only
when hStart, vStart, and valid signals assert high, an indicator of the start of a new frame. After lock
toggles to 1, the 'push' input of FIFO now follows a delayed version of the valid signal. So the valid
pixels of a new frame will be buffered in FIFO.

To test this revised implementation, type the following command at MATLAB prompt.
VERSION=2;

Rerun the simulation. Now the edge output and the original image are perfectly aligned.
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Noise Removal and Image Sharpening

This example shows how to implement a front-end module of an image processing design. This front-
end module removes noise and sharpens the image to provide a better initial condition for the
subsequent processing.

An object out of focus results in a blurred image. Dead or stuck pixels on the camera or video sensor,
or thermal noise from hardware components, contribute to the noise in the image. In this example,
the front-end module is implemented using two pixel-stream filter blocks from the Vision HDL
Toolbox™. The median filter removes the noise and the image filter sharpens the image. The example
compares the pixel-stream results with those generated by the full-frame blocks from the Computer
Vision System Toolbox™.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx™ Zyng™ reference design. See “Image Sharpening with Zyng-Based
Hardware” (Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware).

Structure of the Example

Computer Vision System Toolbox blocks operate on an entire frame at a time. Vision HDL Toolbox
blocks operate on a stream of pixel data, one pixel at a time. The conversion blocks in Vision HDL
Toolbox, Frame To Pixels and Pixels To Frame, enable you to simulate streaming-pixel designs
alongside full-frame designs.

The NoiseRemovalAndImageSharpeningHDL.slx system is shown below.

Noise Removal and Image Sharpening.

tr N tnxlut b ."I o Het I:l

-
Y

Image Sourcs Full-Frame Behavioral kMode HDL IL

—®| pixelln pixelOut —

Pixel-Stream HOL Model

|l-"| Copyright 2015 The MathWorks, Inc.

The following diagram shows the structure of the Full-Frame Behavioral Model subsystem, which
consists of the frame-based Median Filter and 2-D FIR Filter. As mentioned before, median filter
removes the noise and 2-D FIR Filter is configured to sharpen the image.
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The Pixel-Stream HDL Model subsystem contains the streaming implementation of the median filter
and 2-D FIR filter, as shown in the diagram below. You can generate HDL code from the Pixel-Stream
HDL Model subsystem.
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The Verification subsystem compares the results from full-frame processing with those from pixel-
stream processing.

One frame of the blurred and noisy source video, its de-noised version after median filtering, and the
sharpened output after 2-D FIR filtering, are shown from left to right in the diagram below.
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Image Source

The following figure shows the Image Source subsystem.
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The Image Source block imports a grayscale image, then uses a MATLAB function block named Blur
and Add Noise to blur the image and inject salt-and-pepper noise. The IMFILTER function uses a 3-
by-3 averaging kernel to blur the image. The salt-and-pepper noise is injected by calling the
IMNOISE(I,'salt & pepper',D) command, where D is the noise density defined as the ratio of the
combined number of salt and pepper pixels to the total pixels in the image. This density value is
specified by the Noise Density constant block, and it must be between 0 and 1. The Image Source
subsystem outputs a 2-D matrix of a full image.

Frame To Pixels: Generating a Pixel Stream

The Frame To Pixels block converts a full image frame to a pixel stream. The Number of components
field is set to 1 for grayscale image input, and the Video format field is 240p to match that of the
video source. The sample time of the Video Source is determined by the product of Total pixels per
line and Total video lines in the Frame To Pixels block. For more information, see the Frame To Pixels
block reference page.

Pixel-Stream HDL Model

The Median Filter block is used to remove the salt and pepper noise. To learn more, refer to the
Median Filter block reference page.

Based on the filter coefficients, the Image Filter block can be used to blur, sharpen, or detect the
edges of the recovered image after median filtering. In this example, Image Filter is configured to
sharpen an image. To learn more, refer to the Image Filter block reference page.

Pixels To Frame: Converting Pixel Stream Back to Full Frame

The Pixels To Frame block converts a pixel stream to the full frame by making use of the
synchronization signals. The Number of components field and the Video format field of the Pixels To
Frame are set at 1 and 240p, respectively, to match the format of the video source.

Verifying the Pixel-Stream Processing Design

The Verification subsystem, as shown below, verifies the results from the pixel-stream HDL model
against the full-frame behavioral model.
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The peak signal to noise ratio (PSNR) is calculated between the reference image and the stream
processed image. Ideally, the ratio should be inf, indicating that the output image from the Full-Frame
Behavioral Model matches that generated from the Pixel-Stream HDL Model.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl( 'NoiseRemovalAndImageSharpeningHDL/Pixel-Stream HDL Model');

To generate test bench, use the following command:

makehdltb('NoiseRemovalAndImageSharpeningHDL/Pixel-Stream HDL Model');
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Multi-Zone Metering

This example shows how to use the Image Statistics block to perform multi-zone metering to extract a
region of interest (ROI).

There are numerous applications where the input video is divided into several zones, and the statistic
is then computed over each zone. For example, many auto-exposure algorithms compute the
difference in the mean intensity between zones. This allows the shutter controller logic to determine
whether the image is under-exposed (overall low illumination), correctly-exposed (uniform
illumination) or over-exposed (one or more ROIs have a larger mean).

Introduction

The MultizoneMeteringHDL.slx system is shown below.

Multi-Zone Meteringl
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The green and red lines represent full-frame processing and pixel-stream processing, respectively.
The color difference indicates the change in the image rate on the streaming branch of the model.
This rate transition is because the pixel stream is sent out in the same amount of time as the full
video frames and therefore it is transmitted at a higher rate.

In this example, the Pixel-Stream ROI extraction subsystem calculates the mean intensity value
over 12 predefined ROIs in a frame and outputs the index number (1-12) that corresponds to the most
illuminated ROI. The downstream Mask Selection subsystem accepts this index number and outputs
the associated binary mask image. The binary mask image is applied to the source video to display
only the most illuminated ROI, and mask off the other 11 ROIs. The Delay block at the top level of the
model is used to match the latency introduced by pixel-stream processing.

One frame of the source image, the binary mask image, and the ROI output, are shown from left to
right in the diagram below.
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You can generate HDL code from the Pixel-Stream ROI Extraction subsystem.
Video Source

The video format is 240p. Each frame consists of 240 lines and 320 pixels per line. In this example,
video frames are divided into 12 non-overlapping rectangular ROIs, denoted as ROI number 1 to 12,
as shown in the diagram below. Each ROI includes one key of the input keypad image.

ROI number 1 has a 107-pixel width and a 60-pixel height, and the (x,y) coordinate of its top-left pixel
is (1,1). ROI number 2 has a 107-pixel width and a 60-pixel height, and the coordinate of its top left
pixel is (108,1), and so on. The first frame of the input video has brighter pixels within ROI number 1,
as shown above. The second frame has brighter pixels within ROI number 2, and so on.

Frame To Pixels: Generating a Pixel Stream

Frame To Pixels converts a full-frame image to a pixel stream. To simulate the effect of horizontal
and vertical blanking periods found in real life hardware video systems, the active image is
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augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:

Function Block Parameters: Frame To Pixels + X
Frame To Pixels {mask) (link)

Converts a full frame image to pixel stream.
Parameters

Mumber of components: |1

Video format:
240p =

Video Format Parameters

Active pixels per line: 320 Active video lines: 240
Total pixels per line: 402 Total video lines: 324
Starting active line: 1 Ending active line: 240
Front porch: 44 Back porch: 38

Total pixels per line

Starting active line j
Active pixels per line
E Back < " Front
= Porch E Act ive Porch
—g  ~ef— | 8 .  f—
z 2] Video
5 >
2 E
<y
Ending active line J
oK Cancel Help

The Number of components field is set to 1 for grayscale image input, and the Video format field
is 240p to match that of the video source.
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In this example, the Active Video region corresponds to the 240x320 matrix of the source image. Six
other parameters, namely, Total pixels per line, Total video lines, Starting active line, Ending
active line, Front porch, and Back porch specify how many non-image data will be augmented on
the four sides of the Active Video. For more information, see the Frame To Pixels block reference

page.

Note that the sample time of the Video Source is determined by the product of Total pixels per line
and Total video lines.

Pixel-Stream ROI Extraction

The Pixel-Stream ROI Extraction subsystem contains two subsystems, namely, Multi-Zone
Metering and ROI Indexer.

mean | | mean1
mean? | mean
— meand | mean3
Pl meand | meand
means | means
meant | meanb
meanT | meanT e _.'
meand p| meanf index
meand | meand
n ctr mean il | mean 10
ctrl meanli | mean il
meani2 | meani2
Multi-Zone Metering ROl Indexer

The Multi-Zone Metering subsystem computes the mean intensity value over the 12 predefined
ROIs. The resulting 12 mean values are passed to the downstream ROI Indexer subsystem. ROI
Indexer outputs the index (1-12) of the ROI that has the maximum mean intensity value (or
equivalently, the most illuminated ROI) among the 12 candidates.

The structure of the Multi-Zone Metering subsystem is shown in the diagram below.
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The Multi-Zone Metering subsystem contains 12 identical ROIStatistic subsystems. Each instance
of ROIStatistic calculates the mean intensity value over one ROI. All of the 12 ROIStatistic
subsystems take pixel and ctrl as their first two inputs. The remaining four inputs specify which ROI
this subsystem works on and they are different from one subsystem to another. For example, the
ROIStaticsticl subsystem focuses on ROI number 1 by accepting the (x,y) coordinate of the top left
pixel (1,1), ROI width of 107, and height 60. Similarly, the ROIStaticstic12 subsystem focuses on
ROI number 12, whose (x,y) coordinate of the top left pixel is (215,181), and whose width and height
are 106 and 60, respectively.

The ROIStatisticl - ROIStatistic12 subsystems share the same structure shown below.
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It contains a ROI subsystem followed by an Image Statistics block. The ROI subsystem manipulates
the control signal of the original 240p image, and constructs the control signals associated only with
the ROI specified by (x,y) pair, ROIWidth, and ROIHeight.

Mask Selection

The structure of the Mask Selection subsystem is shown below.
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mask

Twelve mask images are available, corresponding to the 12 different ROIs. These mask patterns are
shown as BM{1} to BM{12} in the above diagram. When you open the model, the model loads the

predefined BM cell array into the workspace. Masks are binary images with 240p video format. For
mask BM{n} (n=1,2,...,12), the ROI number n is filled with logical 1 pixels (white) and all the other
11 ROIs are filled with logical 0 pixels (black). Based on the index input (1-12), the Mask Selection
subsystem outputs the associated binary mask image.

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™

license.

To generate the HDL code, use the following command.

makehdl('MultizoneMeteringHDL/Pixel-Stream ROI Extraction')
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To generate a test bench, use the following command. Note that the test bench generation takes a
long time due to the large data size. You may want to reduce the simulation time before generating
the test bench.

makehdltb('MultizoneMeteringHDL/Pixel-Stream ROI Extraction')
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Harris Corner Detection

This example shows how to use edge detection as the first step in corner detection. The algorithm is
suitable for FPGAs. For another corner detection algorithm for FPGAs, see the FAST Corner Detector
example.

Corner detection is used in computer vision systems to find features in an image. It is often one of the
first steps in applications like motion detection, tracking, image registration and object recognition.

A corner is intuitively defined as the intersection of two edges. This example uses the Harris &
Stephens algorithm [1] in which the computation is simplified using an approximation of the
eigenvalues of the Harris matrix. For an alternative corner detection design, see the “FAST Corner
Detection” on page 2-52 example.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx™ Zyng™ reference design. See “Corner Detection and Image Overlay with
Zyng-Based Hardware” (Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware).

Introduction

The CornerDetectionHDL.slx system is shown below. The HDL Corner Algorithm subsystem contains
a Corner Detector block with the Method parameter set to Harris.
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First Step: Find the Gradients

The first step in the Harris algorithm is to find the edges in the image. The Corner Detector block
1

0
uses two gradient image filters with coefficients . 10 1 ] and L 1to produce gradients &
G?

and (v, Square and cross-multiply to form G%, Gy and G,

Second Step: Circular Filtering

ol v2 y
The second step of the algorithm is to perform Gaussian filtering to average Gy, Gy and G over a

circular window. The size of the circular window determines the scale of the detected corner. The
block uses a 5x5 window. For three components, the block uses three filters with the same filter
coefficients.

Final Step: Form the Harris Matrix

The final step of the algorithm is to estimate the eigenvalue of the Harris matrix. The Harris matrix is
a symmetric matrix similar to a covariance matrix. The main diagonal is composed of the two
averages of the gradients squared (G3) and '“u). The off diagonal elements are the averages of the
gradient cross-product {Gy), The Harris matrix is:

d . — [ G (G
<A Harria ;:.(,'_I_.”::- "If;_: :'

Compute the Response from the Harris Matrix

The key simplification of the Harris algorithm is estimating the eigenvalues of the Harris matrix as
the determinant minus the scaled trace squared.

R = det( Aptarris) — k - Tr*( Aiarris) where £ is a constant typically 0.04.

The corner metric response, 2, expressed using the gradients is:

ry gy fer 02 TP T P IR Y-
R = (( G2 - (Guy) ) — k- ((G%) + (GY)
When the response is larger than a predefined threshold, a corner is detected:

I = Kihresh
e P N [ ] 12y P AL
(,:_ 2) - (G2) — (Gyy) ) — k- ((G2) +(G}))” > FKthresn

Fixed-Point Settings

The overall function from input image to output corner metric response is a fourth-order polynomial.
This leads to some challenges determining the fixed-point scaling for each step of the computation.
Since we are targeting FPGAs with built-in multipliers, the best strategy is to allow bit growth until
the multiplier size is reached and then start to quantize results on a selective basis to stay within the
bounds of the provided multipliers.
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The input pixel stream is 8-bit grayscale pixel data. Computing the gradients does not add much bit-
growth since the filter kernel has only +1 and -1 coefficients. The result is a full-precision 9-bit signed
fixed-point type.

Squaring and cross-multiplying the gradients produces signed 18-bit results, still in full precision.
Many common FPGA multipliers have 18-bit or 20-bit input wordlengths, so you will have to quantize
at the next step.

The next step is to apply a circular window to the three components using three Image Filters with
Gaussian coefficients. The coefficients are quantized to 18-bit unsigned numbers to fit the FPGA
multipliers. To find the best fraction precision for the coefficients, create a fixed-point number using
the fi() function but only specifying the wordlength. In this case a fractional scaling of 21-bits is best
since the largest value in the coefficient matrix is between 1/8 and 1/16.

coeffs = fi(fspecial('gaussian',[5,5],1.5),0,18)
coeffs =

0.0144 0.0281 0.0351 0.0281 0.0144

0.0281 0.0547 0.0683 0.0547 0.0281

0.0351 0.0683 0.0853 0.0683 0.0351

0.0281 0.0547 0.0683 0.0547 0.0281

0.0144 0.0281 0.0351 0.0281 0.0144

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 18
FractionLength: 21
'1_v‘ﬁ pixal pixel uint8 [1x3]
AT RGEIn I
i ] ReBout | LBy
wint (1] . . P ™ refPisal Sl B oo ettt
%pi‘:_ron.l-; e pceln 0wt uint2 ! pixel . comer Si.'l-‘-"-" R e uint2 » reiPixe _1‘27 OuerisyRGE
<ctr|zh'|l - pixescontrol ] :‘r o %ﬁ"‘ Somenioves refCirl refCi P'i:?i:on -.:._’qu”aﬂ'a'éfv-c-.1 e
SkicaLevel C1OUt :|| Cirlin
RGB2Bin S
SliceLeve
uint8 [1x3]
OuE?R"G_E
®u|nl2
|1'|_-l'| arlayTransp

Results of the Simulation

You can see that the resulting images from the simulation are very similar but not exactly the same.
The small differences in simulation results are because the behavioral model uses C integer
arithmetic rules and the quantization is different from the HDL-ready corner detection block.

Using Simulink, you can understand these differences and decide if the errors are allowable for your
application. If they are not acceptable, you can increase the bit-widths of the operators, although this
increases the area used in the FPGA.
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HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('CornerDetectionHDL/HDL Corner Algorithm')

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. You may want to reduce the simulation time before generating the
test bench.

makehdltb('CornerDetectionHDL/HDL Corner Algorithm')

The part of this model that you can implement on an FPGA is the part between the Frame To Pixels
and Pixels To Frame blocks. That is the subsystem called HDL Corner Algorithm, which includes all
elements of the corner detection algorithm seen above. The rest of the model, including the
Behavioral Corner Algorithm and the sources and sinks, form our Simulink test bench.

Going Further

The Harris & Stephens algorithm is based on approximating the eigenvalues of the Harris matrix as

; 2
shown above. The Harris algorithm uses it = det( Aparris) = k- Tr*(Afarris) as a metric, avoiding
any division or square-root operations. Another way to do corner detection is to compute the actual
eigenvalues.

The analytical solution for the eigenvalues of a 2x2 matrix is well-known and can also be used in
corner detection. When the eigenvalues are both positive and large with the same scale, a corner has
been found.

Tr(A)  [Tr2(A)
NV

)'l.;z 2

det(A)

A = I 1|rI;.-";r‘rf[z;}

det(A)

[ &)

Substituting in our Axarris values we get:

A= (#) b .‘;(¥)3 : (-:;(;f.} - {G3) - -::(;,._,J}E)

A = (I: g z {{;ﬁ}) ' '1,( - z e ) ' (-f:f T2) - {G2) = {C ;,._,,j;g)

Tr(A)
For FPGA implementation it is important to notice the repeated value of 2. We can compute this
value once and then square to combine with det(A) This means that the eigenvalue algorithm
requires only two multipliers but at the expense of more adders and subtractors and a square-root
function, which requires several multipliers on its own.




Harris Corner Detection

You must then compare both eigenvalues to a constant value to make sure they are large. Since the
eigenvalues scale up with image intensity, you also need to make sure they are both around the same
size. You can do this by subtracting one from another and making sure that result is smaller than
some predefined threshold value. Notice that in this subtraction, the first terms cancel out and you
are left with:

)'l.[ . .J'Lj T ku.ll'.'.-.;ll.l.'nu

Ay A < Ethresh

g I;.-"r;-f{ A)

de r[-l':' < Itl'|'|'|.'1'.'¢.I'.'

¥

T _31 ki tresh i
Jil ) det{A) < ( & 'I)

2

You can rearrange this so that it is very similar to Harris metric [ above:

T '2.."1. ;' rreah .
det(A) - —2) 5 ( & 'I)

4 9

Expanding the matrix gives:

]
w1 T 2 2
I T g 12 :l(-:'r.:: T4 IE-J.:: - F'.”I."f.“.r.'
(G2) - (G2) - (Guy) u > (2

The similarity between the difference of the eigenvalues and the Harris /& metric shows how the
Harris approximation works. If you rearrange the terms under the square-root and swap the signs so

the result must be greater than or equal to a predefined threshold, you arrive at essentially the Harris
metric with some scaling.

References

[1] C. Harris and M. Stephens (1988). "A combined corner and edge detector". Proceedings of the 4th
Alvey Vision Conference. pp. 147-151.
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FAST Corner Detection

2-52

This example shows how to perform corner detection using the features-from-accelerated-segment
test (FAST) algorithm. The FAST algorithm determines if a corner is present by testing a circular area
around the potential center of the corner. The test detects a corner if a contiguous section of pixels
are either brighter than the center plus a threshold or darker than the center minus a threshold. The
algorithm is suitable for FPGAs. For another corner detection algorithm for FPGAs, see the “Harris
Corner Detection” on page 2-47 example.

In a software implementation this algorithm allows for a quick test to rule out potential corners by
only testing the four pixels along the axes. Software algorithms only perform the full test if the quick
test passes. A hardware implementation can easily perform all the tests in parallel so a quick test is
not particularly advantageous and is not included in this example.

The FAST algorithm can be used at many sizes or scales. This example detects corners using a
sixteen-pixel circle. In these sixteen pixels, if any nine contiguous pixel meet the brighter or darker
limit then a corner is detected.

MATLAB FAST Corner Detection

The Computer Vision System Toolbox™ includes a software FAST corner detection algorithm in the
detectFASTFeatures function. This example uses this function as the behavioral model to compare
against the FAST algorithm design for hardware in Simulink®. The function has parameters for
setting the minimum contrast and the minimum quality.

The minimum contrast parameter is the threshold value that is added or subtracted from the center
pixel value before comparing to the ring of pixels.

The minimum quality parameter controls which detected corners are "strong" enough to be marked
as actual corners. The strength metric in the original FAST paper is based on summing the
differences of the pixels in the circular area to the central pixel [2]. Later versions of this algorithm
use a different strength metric based on the smallest change in pixel value that would make the
detection no longer a corner. detectFastFeatures uses the smallest-change metric.

This code reads the first frame of video, converts it to gray scale, and calls detectFASTFeatures.
The result is a vector of corner locations. To display the corner locations, use the vector to draw
bright green dots over the corner pixels in the output frame.

v = VideoReader('rhinos.avi');
I = rgb2gray(readFrame(v));
% create output RGB frame
Y = repmat(I,[1 1 3]);
corners = detectFASTFeatures(I, 'minContrast',15/255, 'minQuality',1/255);
locs = corners.Location;
for ii = 1:size(locs,1)
Y(floor(locs(ii,2)),floor(locs(ii,1)),2) = 255; % green dot
end
imshow(Y)
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Limitations of the FAST Algorithm

Other corner detection methods work very differently from the FAST method and a surprising result
is that FAST does not detect corners on computer generated images that are perfectly aligned to the
x and y axes. Since the detected corner must have a ring of darker or lighter pixel values around the
center that includes both edges of the corner, crisp images do not work well. For example, try the
FAST algorithm on the input image used in the Harris “Harris Corner Detection” on page 2-47
example.

I = imread('cornerboxes.png');
Ig = rgb2gray(I);
corners = detectFASTFeatures(Ig, 'minContrast',15/255, 'minQuality',1/255)

corners =
Ox1 cornerPoints array with properties:

Location: [0x2 singlel
Metric: [0x1 single]
Count: 0

You can see that the function detected zero corners. This because the FAST algorithm requires a ring
of contrasting pixels more than halfway around the center of corner. In the computer generated
image, both edges of a box at a corner are in the ring of pixel used, so the test for a corner fails. A
work-around to this problem is to add blur (by applying a Gaussian filter) to the image so that the
corners are less precise but can be detected. After blurring, the FAST algorithm now detects over 100
corners.

h = fspecial('gauss',5);

Ig = imfilter(Ig,h);
corners = detectFASTFeatures(Ig, 'minContrast',15/255, 'minQuality"',1/255)
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locs = corners.Location;

for ii = 1l:size(locs,1)
I(floor(locs(ii,2)),floor(locs(ii,1)),2) = 255; % green dot

end

imshow(I)

corners =
136x1 cornerPoints array with properties:
Location: [136x2 singlel

Metric: [136x1 single]
Count: 136

Behavioral Model for Verification

The Simulink model uses the detectFASTFeatures function as a behavioral model to verify the
results of the hardware algorithm. You can use a MATLAB Function block to run MATLAB code in
Simulink.

modelname = 'FASTCornerHDL';
open_system(modelname);

set param(modelname, 'SampleTimeColors', 'on');

set param(modelname, 'SimulationCommand', 'Update');
set param(modelname, 'Open','on');

set(allchild(0), 'Visible', 'off"');
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The code in a MATLAB Function block must either generate C code or be declared extrinsic. An
extrinsic declaration allows the specified function to run in MATLAB while the rest of the MATLAB
Function block runs in Simulink. The detectFASTFeatures function does not support code
generation, so the MATLAB Function block must use an extrinsic helper function.

For frame-by-frame visual comparison, and the ability to vary the contrast parameter, the helper
function takes an input image and the minimum contrast as inputs. It returns an output image with
green dots marking the detected corners.

function Y = FASTHelper(I,minContrast)
Y =1;
corners = detectFASTFeatures(I(:,:,1), 'minContrast',double(minContrast)/255, 'minQuality',1/255);
locs = corners.Location;
for ii = l:size(locs,1)
Y(floor(locs(ii,2)),floor(locs(ii,1)),2) = 255; % green dot
end

end

The MATLAB Function block must have a defined size for the output array. A fast way to define the
output size is to copy the input to the output before calling the helper function. This is the code inside
the MATLAB Function block:

function Y = fcn(I,minContrast)
coder.extrinsic('FASTHelper'");
Y =1;
Y = FASTHelper(I,minContrast);
end

Implementation for HDL

The FAST algorithm implemented in the Vision HDL Toolbox Corner Detector block in this model tests
9 contiguous pixels from a ring of 16 pixels, and compares their values to the center pixel value. A
kernel of 7x7 pixels around each test pixel includes the 16-pixel ring. The diagram shows the center
pixel and the ring of 16 pixels around it that is used for the test. The ring pixels, clockwise from the
top-middle, are

indices = [22 29 37 45 46 47 41 35 28 21 13 5 4 3 9 15];
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These pixel indices are used for selection and comparison. The order must be contiguous, but the ring
can begin at any point.
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After computing corner metrics using these rings of pixels, the algorithm determines the maximum
corner metric in each region and suppresses other detected corners. The model then overlays the
non-suppressed corner markers onto the original input image.

The hardware algorithm is in the FASTHDLAlgorithm subsystem. This subsystem supports HDL code
generation.

open_system([modelname '/FASTHDLAlgorithm'], 'force');
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Corner Detection

To determine the presence of a corner, look for all possible 9-pixel contiguous segments of the ring
that have values either greater than or less than the threshold value.

In hardware, you can perform all these comparisons in parallel. Each comparator block expands to 16
comparators. The output of the block is 16 binary decisions representing each segment of the ring.

Non-Maximal Suppression

The FAST algorithm identifies many, many potential corners. To reduce subsequent processing, all
corners except the corners with the maximum corner metric in a particular region can be removed or
suppressed. There are many algorithms for non-maximal suppression suitable for software
implementation, but few suitable for hardware. In software, a gradient-based approach is used, which
can be resource intensive in hardware. In this model a simple but very effective technique is to
compare corner metrics in a 5x5 kernel and produce a boolean result. The boolean output is true if
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the corner metric in the center of the kernel is greater than zero (i.e. it is a corner) and also it is the
maximum of all the other corner metrics in the 5x5 region. The greater-than-zero condition matches
setting minQuality to 1 for the detectFASTFeatures function.

Since the processing of the pixel stream is from left to right and top to bottom, the results contain
some directional effects, such as that the detected corners do not always perfectly align with the
objects. The NonMaxSuppress subsystem includes a constant block that allows you to disable
suppression and visualize the complete results.

open_system([modelname '/FASTHDLAlgorithm/NonMaxSuppress'],'force');
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Align and Overlay

At the output of the NonMaxSuppress subsystem, the pixel stream includes markers for the strongest
corner in each 5x5 region. Next, the model realigns the detected corners with the original pixel
stream using the Pixel Stream Aligner block. After the original stream and the markers are aligned in
time, the model overlays a green dot on the corners. The Overlay subsystem contains an alpha mixer
with constants for the color and alpha values.

The output viewers show the overlaid green dots for corners detected. The Behavioral Video Viewer

shows the output of the detectFastFeatures function, and the HDL Video Viewer shows the
output of the HDL algorithm.
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Going Further

The non-maximal suppression algorithm could be improved by following gradients and using a
multiple-pass strategy, but that computation would also use more hardware resources.

Conclusion

This example shows how to start using detectFASTFeatures in MATLAB and then move to
Simulink for the FPGA portion of the design. The hardware algorithm in the Corner Detector block
includes a test of the ring around the central pixel in a kernel, and a corner strength metric. The
model uses a non-maximal suppression function to remove all but the strongest detected corners. The
design then overlays the corner locations onto the original video input, highlighting the corners in
green.
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Lane Detection

This example shows how to implement a lane-marking detection algorithm for FPGAs.

Lane detection is a critical processing stage in Advanced Driving Assistance Systems (ADAS).
Automatically detecting lane boundaries from a video stream is computationally challenging and
therefore hardware accelerators such as FPGAs and GPUs are often required to achieve real time
performance.

In this example model, an FPGA-based lane candidate generator is coupled with a software-based
polynomial fitting engine, to determine lane boundaries.

System Overview

The LaneDetectionHDL.slx system is shown below. The HDLLaneDetector subsystem represents the
hardware accelerated part of the design, while the SWLaneFitandOverlay subsystem represent the
software based polynomial fitting engine. Prior to the Frame to Pixels block, the RGB input is
converted to intensity color space.

Lane Detection
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The HDL Lane Detector represents the hardware-accelerated part of the design. This subsystem
receives the input pixel stream from the front-facing camera source, transforms the view to obtain
the birds-eye view, locates lane marking candidates from the transformed view and then buffers them
up into a vector to send to the software side for curve fitting and overlay.

HDL Lane Detector
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Birds-Eye View

The Birds-Eye View block transforms the front-facing camera view to a birds-eye perspective.
Working with the images in this view simplifies the processing requirements of the downstream lane
detection algorithms. The front-facing view suffers from perspective distortion, causing the lanes to
converge at the vanishing point. The first stage of the system corrects the perspective distortion by
transforming to the birds-eye view

The Inverse Perspective Mapping is given by the following expression:

L (h“.e' b oy + g hayxe + hooy 4 Frg;i)
(&, 4) = round

ha1z + hgoy + hg " hayx + hgoy + hgg

The homography matrix, h, is derived from four intrinsic parameters of the physical camera setup,
namely the focal length, pitch, height and principle point (from a pinhole camera model). Please refer
to Computer Vision System Toolbox™ documentation for further details.

Direct evaluation of the source (front-facing) to destination (birds-eye) mapping in real time on FPGA/
ASIC hardware is challenging. The requirement for division along with the potential for non-
sequential memory access from a frame buffer mean that the computational requirements of this part
of the design are substantial. Therefore instead of directly evaluating the IPM calculation in real time,
an offline analysis of the input to output mapping has been performed and used to pre-compute a
mapping scheme. This is possible as the homography matrix is fixed after factory calibration/
installation of the camera, due to the camera position, height and pitch being fixed.

In this particular example, the birds-eye output image is a frame of [700x640] dimensions, whereas
the front-facing input image is of [480x640] dimensions. There is not sufficient blanking available in
order to output the full birds-eye frame before the next front-facing camera input is streamed in.
Internally, the Birds-Eye view block will therefore lock up when it begins to process a new input
frame, and will not accept new frame data until it has finished outputting the current birds-eye frame.

Line Buffering and Address Computation

A full sized projective transformation from input to output would result in a [900x640] output image.
This requires that the full [480x640] input image is stored in memory, while the source pixel location
is calculated using the source location and homography matrix. Ideally on-chip memory should be
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used for this purpose, removing the requirement for an off-chip frame buffer. Analysis of the mapping
of input line to output line reveals that in order to generate the first 700 lines of the top down birds
eye output image, around 50 lines of the input image are required. This is an acceptable number of
lines to store using on-chip memory.

Lane Detection

With the birds-eye view image obtained, the actual lane detection can be performed. There are many
techniques which can be considered for this purpose. To achieve an implementation which is robust,
works well on streaming image data and which can be implemented in FPGA/ASIC hardware at
reasonable resource cost, this example uses the approach described in [1]. This algorithm performs a
full image convolution with a vertically oriented first order Gaussian derivative filter kernel, followed
by sub-region processing.
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Vertically Oriented Filter Convolution

Immediately following the birds-eye mapping of the input image, the output is convolved with a filter
designed to locate strips of high intensity pixels on a dark background. The width of the kernel is 8
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pixels, which relates to the width of the lines that appear in the birds-eye image. The height is set to
16 which relates to the size of the dashed lane markings which appear in the image. As the birds-eye
image is physically related to the height, pitch etc. of the camera, the width at which lanes appear in
this image is intrinsically related to the physical measurement on the road. The width and height of
the kernel may need to be updated when operating the lane detection system in different countries.

The output of the filter kernel is shown below, using jet colormap to highlight differences in intensity.
Because the filter kernel is a general, vertically oriented Gaussian derivative, there is some response
from many different regions. However, for the locations where a lane marking is present, there is a
strong positive response located next to a strong negative response, which is consistent across
columns. This characteristic of the filter output is used in the next stage of the detection algorithm to
locate valid lane candidates.
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Lane Candidate Generation

After convolution with the Gaussian derivative kernel, sub-region processing of the output is
performed in order to find the coordinates where a lane marking is present. Each region consists of
18 lines, with a ping-pong memory scheme in place to ensure that data can be continuously streamed
through the subsystem.
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Histogram Column Count

Firstly, HistogramColumnCount counts the number of thresholded pixels in each column over the 18
line region. A high column count indicates that a lane is likely present in the region. This count is
performed for both the positive and the negative thresholded images. The positive histogram counts
are offset to account for the kernel width. Lane candidates occur where the positive count and
negative counts are both high. This exploits the previously noted property of the convolution output
where positive tracks appear next to negative tracks.

Internally, the column counting histogram generates the control signalling that selects an 18 line
region, computes the column histogram, and outputs the result when ready. A ping-pong buffering
scheme is in place which allows one histogram to be reading while the next is writing.

Overlap and Multiply

As noted, when a lane is present in the birds-eye image, the convolution result will produce strips of
high-intensity positive output located next to strips of high-intensity negative output. The positive and
negative column count histograms locate such regions. In order to amplify these locations, the
positive count output is delayed by 8 clock cycles (an intrinsic parameter related to the kernel width),
and the positive and negative counts are multiplied together. This amplifies columns where the
positive and negative counts are in agreement, and minimizes regions where there is disagreement
between the positive and negative counts. The design is pipelined in order to ensure high throughput
operation.
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Zero Crossing Filter

At the output of the Overlap and Multiply subsystem, peaks appear where there are lane markings
present. A peak detection algorithm determines the columns where lane markings are present.
Because the SNR is relatively high in the data, this example uses a simple FIR filtering operation
followed by zero crossing detection. The Zero Crossing Filter is implemented using the Discrete FIR
Filter block from DSP System Toolbox™. It is pipelined for high-throughput operation.

Pral Guleclinn Filer Sulpel

Store Dominant Lanes

The zero crossing filter output is then passed into the Store Dominant Lanes subsystem. This
subsystem has a maximum memory of 7 entries, and is reset every time a new batch of 18 lines is
reached. Therefore, for each sub-region 7 potential lane candidates are generated. In this subsystem,
the Zero Crossing Filter output is streamed through, and examined for potential zero crossings. If a
zero crossing does occur, then the difference between the address immediately prior to zero crossing
and the address after zero crossing is taken in order to get a measurement of the size of the peak.
The subsystem stores the zero crossing locations with the highest magnitude.
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Compute Ego Lanes

The Lane Detection subsystem outputs the 7 most viable lane markings. In many applications, we are
most interested in the lane markings that contain the lane in which the vehicle is driving. By
computing the so called "Ego-Lanes" on the hardware side of the design, we can reduce the memory
bandwidth between hardware and software, by sending 2 lanes rather than 7 to the processor. The
Ego-Lane computation is split into two subsystems. The FirstPassEgoLane subsystem assumes that
the centre column of the image corresponds to the middle of the lane, when the vehicle is correctly
operating within the lane boundaries. The lane candidates which are closest to the center are
therefore assumed as the ego lanes. The Outlier Removal subsystem maintains an average width of
the distance from lane markings to centre coordinate. Lane markers which are not within tolerance of
the current width are rejected. Performing early rejection of lane markers gives better results when
performing curve fitting later on in the design.
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Control Interface

Finally, the computed ego lanes are sent to the Ctrlinterface MATLAB function subsystem. This state
machine uses the four control signal inputs - enable, hwStart, hwDone, and swStart to determine
when to start buffering, accept new lane coordinate into the 40x1 buffer and finally indicate to the
software that all 40 lane coordinates have been buffered and so the lane fitting and overlay can be
performed. The dataReady signal ensures that software will not attempt lane fitting until all 40
coordinates have been buffered, while the swStart signal ensures that the current set of 40
coordinates will be held until lane fitting is completed.

Software Lane Fit and Overlay

The detected ego-lanes are then passed to the SW Lane Fit and Overlay subsystem, where robust
curve fitting and overlay is performed. Recall that the birds-eye output is produced once every two
frames or so rather than on every consecutive frame. The curve fitting and overlay is therefore placed
in an enabled subsystem, which is only enabled when new ego lanes are produced.
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The Driver MATLAB Function subsystem controls the synchronization between hardware and
software. Initially it is in a polling state, where it samples the dataReady input at regular intervals per
frame to determine when hardware has buffered a full [40x1] vector of lane coordinates. Once this
occurs, it transitions into software processing state where swStart and process outputs are held high.
The Driver remains in the software processing state until swDone input is high. Seeing as the process
output loops back to swDone input with a rate transition block in between, there is effectively a
constant time budget specified for the FitLanesandOverlay subsystem to perform the fitting and
overlay. When swDone is high, the Driver will transition into a synchronization state, where swStart is
held low to indicate to hardware that processing is complete. The synchronization between software
and hardware is such that hardware will hold the [40x1] vector of lane coordinates until the swStart
signal transitions back to low. When this occurs, dataReady output of hardware will then transition
back to low.

Fit Lanes and Overlay

The Fit Lanes and Overlay subsystem is enabled by the Driver. It performs the necessary arithmetic
required in order to fit a polynomial onto the lane coordinate data received at input, and then draws
the fitted lane and lane coordinates onto the Birds-Eye image.

Fit Lanes

The Fit Lanes subsystem runs a RANSAC based line-fitting routine on the generated lane candidates.
RANSAC is an iterative algorithm which builds up a table of inliers based on a distance measure
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between the proposed curve, and the input data. At the output of this subsystem, there is a [3x1]
vector which specifies the polynomial coefficients found by the RANSAC routine.

Overlay Lane Markings

The Overlay Lane Markings subsystem performs image visualization operations. It overlays the ego
lanes and curves found by the lane-fitting routine.
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Results of the Simulation

The model includes two video displays shown at the output of the simulation results. The BirdsEye
display shows the output in the warped perspective after lane candidates have been overlaid,
polynomial fitting has been performed and the resulting polynomial overlaid onto the image. The
OriginalOverlay display shows the BirdsEye output warped back into the original perspective.

Due to the large frame sizes used in this model, simulation can take a relatively long time to
complete. If you have an HDL Verifier™ license, you can accelerate simulation speed by directly
running the HDL Lane Detector subsystem in hardware using FPGA in the Loop (TM).
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BirdsEye
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HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.
makehdl('LaneDetectionHDL/HDLLaneDetector"')

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. You may want to reduce the simulation time before generating the

test bench.

makehdltb('LaneDetectionHDL/HDLLaneDetector")
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For faster test bench simulation, you can generate a SystemVerilog DPIC test bench using the
following command.

makehdltb('LaneDetectionHDL/HDLLaneDetector"', 'GenerateSVDPITestBench', 'ModelSim')

Conclusion

This example has provided insight into the challenges of designing ADAS systems in general, with
particular emphasis paid to the acceleration of critical parts of the design in hardware.

References
[1] R. K. Satzoda and Mohan M. Trivedi, "Vision based Lane Analysis: Exploration of Issues and
Approaches for Embedded Realization", 2013 IEEE Conference on Computer Vision and Pattern
Recognition.

[2] Video from Caltech Lanes Dataset - Mohamed Aly, "Real time Detection of Lane Markers in Urban
Streets", 2008 IEEE Intelligent Vehicles Symposium - used with permission.
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Generate Cartoon Images Using Bilateral Filtering

This example shows how to generate cartoon lines and overlay them onto an image.

Bilateral filtering [1] is used in computer vision systems to filter images while preserving edges and
has become ubiquitous in image processing applications. Those applications include denoising while
preserving edges, texture and illumination separation for segmentation, and cartooning or image
abstraction to enhance edges in a quantized color-reduced image.

Bilateral filtering is simple in concept: each pixel at the center of a neighborhood is replaced by the
average of its neighbors. The average is computed using a weighted set of coefficients. The weights
are determined by the spatial location in the neighborhood (as in a traditional Gaussian blur filter),

and the intensity difference from the center value of the neighborhood.

These two weighting factors are independently controllable by the two standard deviation parameters
of the bilateral filter. When the intensity standard deviation is large, the bilateral filter acts more like
a Gaussian blur filter, because the intensity Gaussian is less peaked. Conversely, when the intensity
standard deviation is smaller, edges in the intensity are preserved or enhanced.

This example model provides a hardware-compatible algorithm. You can generate HDL code from this
algorithm, and implement it on a board using a Xilinx™ Zynq™ reference design. See “Bilateral
Filtering with Zyng-Based Hardware” (Computer Vision Toolbox Support Package for Xilinx Zyng-
Based Hardware).

Introduction

The BilateralFilterHDLExample.slx system is shown here.

modelname = 'BilateralFilterHDLExample';
open_system(modelname) ;

set param(modelname, 'SampleTimeColors', 'on');
set param(modelname, 'SimulationCommand', 'Update');
set param(modelname, 'Open', 'on');

set(allchild(0), 'Visible', 'off');
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Step 1: Establish the Parameter Values

To achieve a modest Gaussian blur of the input, choose a relatively large spatial standard deviation of
3. To give strong emphasis to the edges of the image, choose an intensity standard deviation of 0.75.
The intensity Gaussian is built from the image data in the neighborhood, so this plot represents the
maximum possible values. Note the small vertical scale on the spatial Gaussian plot.
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figure('units', 'normalized’, 'outerposition',[0 0.5 0.75 0.45]);
subplot(1,2,1);

sl = surf(fspecial('gaussian',[9 9 1,3));

subplot(1,2,2);

s2 = surf(fspecial('gaussian',[9 9 1,0.75));

legend(sl, 'Spatial Gaussian 3.0');

legend(s2, 'Intensity Gaussian 0.75');
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Fixed-Point Settings

For HDL code generation, you must choose a fixed-point data type for the filter coefficients. The
coefficient type should be an unsigned type. For bilateral filtering, the input range is always assumed

to be on the interval [0: 1], Therefore, a uint8 input with a range of values from [0, 255] are treated as
0,255

255 . The calculated coefficient values are less than 1. The exact values of the coefficients depend
on the neighborhood size and the standard deviations. Larger neighborhoods spread the Gaussian
function such that each coefficient value is smaller. A larger standard deviation flattens the Gaussian
to produce more uniform values, while a smaller standard deviation produces a peaked response.

If you try a type and the coefficients are quantized such that more than half of the kernel becomes
zero for all input, the Bilateral Filter block issues a warning. If all of the coefficients are zero
after quantization, the block issues an error.

Step 2: Filter the Intensity Image

The model converts the incoming RGB image to intensity using the Color Space Converter block.
Then the grayscale intensity image is sent to the Bilateral Filter block, which is configured for a 9-
by-9 neighborhood and the parameters established previously.

The bilateral filter provides some Gaussian blur but will strongly emphasize larger edges in the image
based on the 9-by-9 neighborhood size.

open_system([modelname '/HDLAlgorithm'], ' 'force');



Generate Cartoon Images Using Bilateral Filtering

Lint8 [1x3]
o

pixel

pixelin

(D

pixhcontrol

Quantize

ciln

G

Pixel Stream __ |boolean
Lintg Lintd Alignar | refPixal

uintd

===l

1 pixel picel pixel pikel pixel boolsan

1T RGE to _ . Edge refPixs
o o Bilateral Filte R

intensity pixelcontrod pixsicontred

r ctr ctr ctr cir Sabel

pixslcantro:

pixsicontro ) it
. atr refCtr =

‘Align

GradThresh

wintd (

Threshin Lints
ThreshOut

(€D

LineRGB

[

e )

RGEIn
H

uir
RGEOUt

FrameBoundary

Step 3: Compute Gradient Magnitude

Next, the Sobel Edge Detector block computes the gradient magnitude. Since the image was pre-
filtered using a bilateral filter with a fairly large neighborhood, the smaller, less important edges in
the image will not be emphasized during edge detection.

The threshold parameter for the Sobel Edge Detector block can come from a constant value on the
block mask or from a port. The block in this model uses port to allow the threshold to be set
dynamically. This threshold value must be computed for your final system, but for now, you can just
choose a good value by observing results.

Synchronize the Computed Edges

To overlay the thresholded edges onto the original RGB image, you must realign the two streams. The
processing delay of the bilateral filter and edge detector means that the thresholded edge stream and
the input RGB pixel stream are not aligned in time.

The Pixel Stream Aligner block brings them back together. The RGB pixel stream is connected to the
upper pixel input port, and the binary threshold image pixel is connected to the reference input port.
The block delays the RGB pixel stream to match the threshold stream.

You must set the number of lines parameter to a value that allows for the delay of both the bilateral
filter and the edge detector. The 9-by-9 bilateral filter has a delay of more than 4 lines, while the edge
detector has a delay of a bit more than 1 line. For safety, set the Maximum number of lines to 10
for now so that you can try different neighborhood sizes later. Once your design is done, you can
determine the actual number of lines of delay by observing the control signal waveforms.

Color Quantization

Color quantization reduces the number of colors in an image to make processing it easier. Color
quantization is primarily a clustering problem, because you want to find a single representative color
for a cluster of colors in the original image.

For this problem, you can apply many different clustering algorithms, such as k-means or the median
cut algorithm. Another common approach is using octrees, which recursively divide the color space
into 8 octants. Normally you set a maximum depth of the tree, which controls the recursive subtrees
that will be eliminated and therefore represented by one node in the subtree above.

These algorithms require that you know beforehand all of the colors in the original image. In pixel
streaming video, the color discovery step introduces an undesirable frame delay. Color quantization is
also generally best done in a perceptually uniform color space such as L*a*h. When you cluster colors
in RGB space, there is no guarantee that the result will look representative to a human viewer.
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The Quantize subsystem in this model uses a much simpler form of color quantization based on the
most significant 4 bits of each 8-bit color component. RGB triples with 8-bit components can

represent up to 2*' = 2%. 2% . 2% colors but no single image can use all those colors. Similarly when

you reduce the number of bits per color to 4, the image can contain up to 2'* = 2*. 2%. 2% colors. In
practice a 4-bit-per-color image typically contains only several hundred unique colors.

After shifting each color component to the right by 4 bits, the model shifts the result back to the left
by 4 bits to maintain the 24-bit RGB format supported by the video viewer. In an HDL system, the
next processing steps would pass on only the 4-bit color RGB triples.

open_system([modelname '/HDLAlgorithm/Quantize'],'force');

uintd [1x3] uintd [1x3] uintd [1x3]
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Overlay the Edges

A switch block overlays the edges on the original image by selecting either the RGB stream or an
RGB parameter. The switch is flipped based on the edge-detected binary image. Because cartooning
requires strong edges, the model does not use an alpha mixer.

Parameter Synchronization

In addition to the pixel and control signals, two parameters enter the HDLAlgorithm subsystem: the
gradient threshold and the line RGB triple for the overlay color. The FrameBoundary subsystem
provides run-time control of the threshold and the line color. However, to avoid an output frame with
a mix of colors or thresholds, the subsystem registers the parameters only at the start of each frame.

open_system([modelname '/HDLAlgorithm/FrameBoundary'], 'force');
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Simulation Results

After you run the simulation, you can see that the resulting images from the simulation show bold
lines around the detected features in the input video.
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HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('BilateralHDLExample/HDLAlgorithm")

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. Consider reducing the simulation time before generating the test
bench.

makehdltb('BilateralHDLExample/HDLAlgorithm")

The part of the model between the Frame to Pixels and Pixels to Frame blocks can be implemented on
an FPGA. The HDLAlgorithm subsystem includes all elements of the bilateral filter, edge detection,
and overlay.

Going Further

The bilateral filter in this example is configured to emphasize larger edges while blurring smaller
ones. To see the edge detection and overlay without bilateral filtering, right-click the Bilateral Filter
block and select Comment Through. Then rerun the simulation. The updated results show that many
smaller edges are detected and in general, the edges are much noisier.

This model has many parameters you can control, such as the bilateral filter standard deviations, the
neighborhood size, and the threshold value. The neighborhood size controls the minimum width of
emphasized edges. A smaller neighborhood results in more small edges being highlighted.

You can also control how the output looks by changing the RGB overlay color and the color
quantization. Changing the edge detection threshold controls the strength of edges that are overlaid.

To further cartoon the image, you can try adding multiple bilateral filters. With a the right
parameters, you can generate a very abstract image that is suitable for a variety of image
segmentation algorithms.

Conclusion

This model generated a cartoon image using bilateral filtering and gradient generation. The model
overlaid the cartoon lines on a version of the original RGB image that was quantized to a reduced
number of colors. This algorithm is suitable for FPGA implementation.

References

[1] Tomasi, C., and R. Mandugcji. "Bilateral filtering for gray and color images." Sixth International
Conference on Computer Vision, 1998.
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Pothole Detection

2-78

This example extends the “Generate Cartoon Images Using Bilateral Filtering” on page 2-73 example
to include calculating a centroid and overlaying a centroid marker and text label on detected
potholes.

Road hazard or pothole detection is an important part of any automated driving system. Previous
work [1] on automated pothole detection defined a pothole as an elliptical area in the road surface
that has a darker brightness level and different texture than the surrounding road surface. Detecting
potholes using image processing then becomes the task of finding regions in the image of the road
surface that fit the chosen criterion. You can use any or all of the elliptical shape, darker brightness
or texture criterion.

To measure the elliptical shape you can use a voting algorithm such as Hough circle, or a template
matching algorithm, or linear algebra-based methods such as a least squares fit. Measuring the
brightness level is simple in image processing by selecting a brightness segmentation value. The
texture can be assessed by calculating the spatial frequency in a region using techniques such as the
FFT.

This example uses brightness segmentation with an area metric so that smaller defects are not
detected. To find the center of the defect, this design calculates the centroid. The model overlays a
marker on the center of the defect and overlays a text label on the image.

Introduction

The PotHoleHDLDetector.slx system is shown below. The PotHoleHDL subsystem contains the pothole
detector and overlay algorithms and supports HDL code generation. There are four input parameters
that control the algorithm. The ProcessorBehavioral subsystem writes character maps into a RAM for
use as overlay labels.

modelname = 'PotHoleHDLDetector';
open_system(modelname);

set param(modelname, 'SampleTimeColors', 'on');

set param(modelname, 'SimulationCommand', 'Update');
set param(modelname, 'Open','on');

set(allchild(0), 'Visible"', 'off');
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Overview of the FPGA Subsystem

The PotHoleHDL subsystem converts the RGB input video to intensity, then performs bilateral
filtering and edge detection. The TrapezoidalMask subsystem selects the roadway area. Then the
design applies a morphological close and calculates centroid coordinates for all potential potholes.
The detector selects the largest pothole in each frame and saves the center coordinates. The Pixel
Stream Aligner matches the timing of the coordinates with the input stream. Finally, the
Fiducial31x31 and the Overlay32x32 subsystems apply alpha channel overlays on the frame to add a
pothole center marker and a text label.

open_system([modelname '/PotHoleHDL'], 'force');

BAGHIN g0 el . s 13

Overieyizniz

Input Parameter Values
The subsystem has four input parameters that can change while the system is running.

The gradient intensity parameter, Gradient Threshold, controls the edge detection part of the
algorithm.

The Cartoon RGB parameter changes the color of the overlays, that is, the fiducial marker and the
text.
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The Area Threshold parameter sets the minimum number of marked pixels in the detection window in
order for it to be classified as a pothole. If this value is too low, then linear cracks and other defects
that are not road hazards will be detected. If it is too high then only the largest hazards will be
detected.

The final parameter, Show Raw, allows you to debug the system more easily. It toggles the displayed
image on which the overlays are drawn between the RGB input video and the binary image that the
detector sees. Set this parameter to 1 to see how the detector is working.

All of these parameters work best if changes are only allowed on video frame boundaries. The
FrameBoundary subsystem registers the parameters only on a valid start of frame.

open_system([modelname '/PotHoleHDL/FrameBoundary'], 'force');
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RGB to Intensity

The model splits the input RGB pixel stream so that a copy of the RGB stream continues toward the
overlay blocks. The first step for the detector is to convert from RGB to intensity. Since the input data
type for the RGB is uint8, the RGB to Intensity block automatically selects uint8 as the output data
type.

Bilateral Filter
The next step in the algorithm is to reduce high visual frequency noise and smaller road defects.

There are many ways this can be accomplished but using a bilateral filter has the advantage of
preserving edges while reducing the noise and smaller areas.
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The Bilateral Filter block has parameters for the neighborhood size and two standard deviations, one
for the spatial part of the filter and one for the intensity part of the filter. For this application a
relatively large neighborhood of 9x9 works well. This model uses 3 and 0.75 for the standard
deviations. You can experiment with these values later.

Sobel Edge Detection

The filtered image is then sent to the Sobel edge-detection block which finds the edges in the image
and returns those edges that are stronger than the gradient threshold parameter. The output is a
binary image. In your final application, this threshold can be set based on variables such as road
conditions, weather, image brightness, etc. For this model, the threshold is an input parameter to the
PotHoleHDL subsystem.

Trapezoidal Mask

From the binary edge image, you need to remove any edges that are not relevant to pothole
detection. A good strategy is to use a mask that selects a polygonal region of interest and makes the
area outside of that black. The model does not use a normal ROI block since that would remove the
location context that you need later for the centroid calculation and labeling.

The order of operations also matters here because if you used the mask before edge detection, the
edges of the mask would become strong lines that would result in false positives at the detector.

In the input video, the area in which the vehicle might encounter a pothole is limited to the roadway
immediately in front of it and a trapezoidal section of roadway ahead. The exact coordinates depend
on the camera mounting and lens. This example uses fixed coordinates for left-side top, right-side top,
left-side bottom, and right-side bottom corners of the area. For this video, the top and bottom of the
trapezoidal area are not parallel so this is not a true trapezoid.

The mask consists of straight lines between the corners, connecting left,right and top,bottom.

ltc---rtc
/ \

This example uses polyfit to determine a straight-line fit from corner to corner. For ease of
implementation, the design calls polyfit with the vertical direction as the independent variable.
This usage calculates x = f(y) instead of the more usualy = f(x). Using polyfit this way
allows you to use a y-direction line counter as the input address of a lookup table of x-coordinates of
the start (left) and end (right) of the area of interest on each line.

The lookup table is typically implemented in a BRAM in an FPGA, so it should be addressed with 0-

based addressing. The model converts from MATLAB 1-based addressing to 0-based addressing just
before the LUTs. To further reduce the size of the lookup table, the address is offset by the starting

line of the trapezoid. In order to get good synthesis results, match typical block RAM registering in

FPGAs by using a register after the lookup table. This register also adds some modest pipelining to

the design.

For the 320x180 image:

raster = [320,180];
ltc [155, 66];
lbc [ 1,140]1;
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rtc
rbc

[155, 66];
[285,179];

% fit to x = f(y) for convenient LUT indexing

abl = polyfit([lbc(2),1tc(2)],[lbc(1l),1tc(1)],1); % left side
abr = polyfit([rbc(2),rtc(2)],[rbc(l),rtc(1)],1); % right side
leftxstart = max(1l,round((ltc(2):rbc(2))*abl(1l)+abl(2)));
rightxend = min(raster(1l),round((ltc(2):rbc(2))*abr(1l)+abr(2)));
startline = min(ltc(2),rtc(2));

endline = max(lbc(2),rbc(2));

% correct to zero-based addressing
leftxstart = leftxstart - 1;
rightxend = rightxend - 1;
startline = startline - 1;

endline = endline - 1;

open_system([modelname '/PotHoleHDL/TrapezoidalMask'], 'force');

DDdaan

:1 bo ol 1
dataln I—
urfid wfiz
hCount —
pixelcan Ntk —
m | cirl HV Counter  wCount —F-— 1-0 Tiu)
cirlin ] pix -+ Linte ufil 1
cirl :!'E ! ol g _‘_,_JJ] »
eftEdge
1-0 Tiu)
ufin11
1 T
rightEdge
boolean
| startlir
topEdge
1 paxelconirol
...................................................................................................................................................... 7 Y|

2-82

Morphological Closing

Next the design uses the Morphological Closing block to remove or close in small features. Closing
works by first doing dilation and then erosion, and helps to remove small features that are not likely
to be potholes. Specify a neighborhood on the block mask that determines how small or large a
feature you want to remove. This model uses a 5x5 neighborhood, similar to a disk, so that small
features are closed in.

Centroid

The centroid calculation finds the center of an active area. The design continuously computes the
centroid of the marked area in each 31x31 pixel region. It only stores the center coordinates when
the detected area is larger than an input parameter. This is a common difference between hardware
and software systems: when designing hardware for FPGAs it is often easier to compute continuously
but only store the answer when you need it, as opposed to calling functions as-needed in software.

For a centroid calculation, you need to compute three things from the region of the image: the
weighted sum of the pixels in the horizontal direction, the weighted sum in the vertical direction, and
the overall sum of all the pixels which corresponds to the area of the marked portion of the region.
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The Line Buffer selects regions of 31x31 pixels, and returns them one column at a time. The
algorithm uses the column to compute vertical weights, and total weights. For the horizontal weights,
the design combines the columns to obtain a 31x31 kernel. You can choose the weights depending on
what you want "center" to mean. This example uses -15:15 so that the center of the 31x31 region is
(0,0) in the computed result.

The Vision HDL Toolbox blocks force the output data to zero when the output is not valid, as indicated
in the pixelcontrol bus output. While not strictly required, this behavior makes testing and debugging
much easier. To accomplish this behavior for the centroid results, the model uses Switch blocks with a
Constant block set to 0.

Since you want the center of the detected region to be relative to the overall image coordinate
system, add the horizontal and vertical pixel count to the calculated centroid.

open_system([modelname '/PotHoleHDL/Centroid31'],'force');
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open_system([modelname '/PotHoleHDL/Centroid31/CentroidKernel'], 'force');
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Detect and Hold

The detector operates on the total area sum from the centroid. The detector itself is very simple:
compare the centroid area value to the threshold parameter, and find the largest area that is larger
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than the threshold. The model logic compares a stored area value to the current area value and
stores a new area when the input is larger than the currently stored value. By using > or >= you can
choose the earliest value over the threshold or the latest value over the threshold. The model stores
the latest value because later values are closer to the camera and vehicle. When the detector stores a
new winning area value, it also updates the X and Y centroid values that correspond to that area.
These coordinates are then passed to the alignment and overlay parts of the subsystem.

To pass the X, Y, and valid indication to the alignment algorithm, pack the values into one 23-bit word.
The model unpacks them once they are aligned in time with the input frames for overlay.

open_system([modelname '/PotHoleHDL/DetectAndHold'], 'force');
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Pixel Stream Aligner

The Pixel Stream Aligner block takes the streaming information from the detector and sends it and
the original RGB pixel stream to the overlay subsystems. The aligner compensates for the processing
delay added by all the previous parts of the detection algorithm, without having to know anything
about the latency of those blocks. If you later change a neighborhood size or add more processing,
the aligner can compensate. If the total delay exceeds the Maximum number of lines parameter of
the Pixel Stream Aligner block, adjust the parameter.

Fiducial Overlay

The fiducial marker is a square reticle represented as a 31-element array of 31-bit fixed-point
numbers. This representation is convenient because a single read returns the whole word of overlay
pixels for each line.
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The diagram shows the overlay pattern by converting the fixed-point data to binary. This pattern can
be anything you wish within the 31x31 size in this design.

load fiducialROM31x31.mat
crosshair = bin(fiducialROM) ;
crosshair(crosshair=='0') = ' ' %change '0' to space for better display

crosshair =

31x31 char array

' 1 .
' 1 .
' 1 .
' 1 .
' 11111111111111111111111 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 .
' 1 1 .
' 1 1 .
‘111111111111 111111111111
' 1 1 .
' 1 1 .
' 1 1 .
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 1 1 1 '
' 11111111111111111111111 '
' 1 .
' 1 .
' 1 .
' 1 .

The fiducial overlay subsystem has a horizontal and vertical counter with a set of four comparators
that uses the center of the detected area as the center of the region for the marker. The marker data
is used as a binary switch that turns on alpha channel overlay. The alpha value is a fixed transparency
parameter applied as a gain on the binary Detect signal when it is unpacked, in the ExpandData
subsystem.

open_system([modelname '/PotHoleHDL/Fiducial31x31'], 'force');
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Character Overlay

The character font ROM for the on-screen display stores data in a manner similar to the fiducial ROM
described above. Each 16-bit fixed-point number represents 16 consecutive horizontal pixels. The
character maps are 16x16.

Since the character data would typically be written by a CPU in ASCII, the simplest way is to store
the character data under 8-bit ASCII addresses in a dual-port RAM. The font ROM stores ASCII
characters 33 ("!") to 122 ("z"). The design offsets the address by 33.

The font ROM was constructed from a public domain fixed width font with a few edits to improve
readability. As in the fiducial marker, the character ROM data is used as a binary switch that turns on
alpha channel overlay. The character alpha value is a fixed transparency parameter applied as a gain
on the Detect signal when it is unpacked, in the ExpandData subsystem.

To visualize the character B in the font ROM, display it in binary.

load charROM16x16.mat
letterB = bin(charROM16x16
letterB(letterB=='0"')=" "'

(529:544)); % character array
% remove 'O' chars for better display

letterB =

16x16 char array

‘111111111 '
‘11111111111 '
' 111 111 '
' 111 111
' 111 111
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' 111 111 '
' 1111111111 '
' 111111111 '
' 111 111 '
' 111 111
' 111 111
' 111 111
' 111 1111
‘11111111111 '
' 111111111 '

open_system([modelname '/PotHoleHDL/Overlay32x32'], 'force');
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Viewing Detector Raw Image

When you work with a complicated algorithm, viewing intermediate steps in the processing can be
very helpful for debugging and exploration. In this model, you can set the boolean Show Raw
parameter to 1 (true) to display the result of morphological closing of the binary image, with the
overlay of the detected results. To convert the binary image for use with the 8-bit RGB overlay, the
model multiplies the binary value by 255 and uses that value on all three color channels.

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('PotHoleHDLDetector/PotHoleHDL")
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To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. You may want to reduce the simulation time before generating the
test bench.

makehdltb('PotHoleHDLDetector/PotHoleHDL")

The part of this model that you can implement on an FPGA is the part between the Frame To Pixels
and Pixels To Frame blocks. That is the subsystem called PotHoleHDL, which includes all the
elements of the detector.

Simulation in an HDL Simulator

Now that you have HDL code, you can simulate it in your HDL Simulator. The automatically
generated test bench allows you to prove that the Simulink simulation and the HDL simulation match.

Synthesis for an FPGA

You can also synthesize the generated HDL code in an FPGA synthesis tool, such as Xilinx Vivado. In a
Virtex-7 FPGA (xc7v585tffg1157-1), the design achieves a clock rate of over 150 MHz.

The utilization report shows that the bilateral filter, pixel stream aligner, and centroid functions
consume most of the resources in this design. The bilateral filter requires the most DSPs. The
centroid implementation is quite efficient and uses only two DSPs. Centroid calculation also requires
a reciprocal lookup table and so uses a large number of LUTs as memory.

Name 1 Slice LUTs Slice Registers F7 Muxes Slice LUT as Logic LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

{364200) {728400) {182100) (31050) (364200) {111000) (364200) (795) (1260)
=[] PotHoleHDL 18619 24540 92 7773 17012 1607 11170 305 92
+ u_Align (Align) 674 1065 90 519 646 28 199 96 1]
. u_Bilateral_Filter (Bilateral ... 5218 13879 1] 3211 5070 145 5804 50 85
u_Centroid31 (C 31) 3836 6542 1 2794 7480 1356 3808 30.5 2
i u_Closing (Closing] 1034 1057 0 400 393 6 619 3 0
u_Color_Space_Converte... 63 148 1] 53 58 5 41 a 3
1] u_DetectAndHold (Dete 0 56 0 17 a 0 a a 0
u_Fdge_Detector (E 569 926 1] 282 544 25 376 2 2
| u_Fidudial31x31 (Fid 266 163 o] 147 282 4 82 a 0
u_FrameBoundary | o 77 36 u] 35 77 1] 2 [u] i}
+ u_Overlay32x32 (Overlay3... 495 178 1 193 4590 5 103 1.5 1]
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Going Further

This example shows one possible implementation of an algorithm for detecting potholes. This design
could be extended in the following ways :

* The gradient threshold could be computed from the average brightness using a gray-world model.

» The trapezoidal mask block could be made "steerable" by looking at the vehicle wheel position and
adjusting the linear fit for the sloping sides of the mask.

» The detector could be made more robust by looking at the average brightness of the RGB or
intensity image relative to the surrounding pavement since potholes are typically darker in
intensity than the surrounding area.

» The visual frequency spectrogram of the pothole could also be used to look for specific types of
surfaces in potholes.

* The detection area threshold value could be computed using average intensity in the trapezoidal
roadway region.
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* Multiple potholes could be detected in one frame by storing the top N responses rather than only
the maximum detected response. The fiducial marker subsystem would need to be redesigned
slightly to allow for overlapping markers.

Conclusion

This model shows how a pothole detection algorithm can be implemented in an FPGA. Many useful
parts of this detector can be reused in other applications, such as the centroid block and the fiducial
and character overlay blocks.
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Buffer Bursty Data Using Pixel Stream FIFO Block

This example shows how to interface with bursty pixel streams, such as those from DMA and Camera
Link® sources, using the Pixel Stream FIFO block.

Overview

The DMACameraSourceHDL.slx system is shown below.

Buffer Bursty Data Using Pixel Stream FIFO Block

DMA Source
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There are two pixel input streams - DMA source and Camera Link source. Input data for both sources
is loaded from a .mat file, in the InitFcn callback. The DMA source models a non-contiguous
stream of data arriving from off-chip memory. The pixels arrive in short bursts of random length, with
random gaps between bursts. This can occur when there is contention on the DMA source and so it is
not possible to stream pixels continuously from off-chip memory. The Camera Link source models the
case when the camera is streaming an image of a lower resolution than the maximum permitted by
the pixel clock and therefore will leave regular gaps between valid pixels. This spacing allows for
streaming of multiple resolution images using a common clock, via strobing of validIn.

The Camera Link source models the incoming video stream from the sensor. The DMA source models
a video stream from a frame buffer in which previous frame data has been processed in order to
produce an alpha channel, allowing for blending of previous frame data with the current stream.

The Pixel Stream Overlay subsystem is shown in the diagram below. You can generate HDL code
from this subsystem.

uindf [1:4] . uintf [1xd]
] pixel
DMA_Pixelin _ . Fixsl Stream FIFO I
pixelcontrol pixelcontrol DMAPixsl
5 ar ol
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- B il uintd [1d] BlandedPixs —!I »(1 )
DMA_pixelClean [1x4] pixel f———— [1x
DMA_pixelAligned ‘pixeiOut
CLPixel
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. . . - " refPixe —
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Buffer Bursty Data Using Pixel Stream FIFO Block

There are four main processing stages in the model - buffering of input data to remove burstiness,
edge detection and overlay on Camera Link stream, alignment of pixel streams, and alpha blending of
DMA stream onto Camera Link stream.

Pixel Stream Buffering

The Pixel Stream FIFO blocks buffer the input data as it is streamed into the model. The Pixel Stream
FIFO is a masked subsystem. Looking into the Pixel Stream FIFO, we can see that it consists of a
Memory Controller, Read and Write counters and two RAMs. One RAM stores the incoming pixel
stream, and the other stores the incoming control signal stream. Once a full line has been buffered in
RAM, the line is output continuously, removing any bursty behavior seen at input.

SO

This waveform illustrates the difference in the pixel control signals after the Pixel Stream FIFO. The
input valid signal, DMA ControlIn(5), shows short bursts of valid pixels, while the output valid,
DMA ctrlClean(5), shows a continuous line of valid pixels. The total cycles in each line, shown by
the time between hStart assertions, remains the same.

| |

Edge Detection and Overlay on Camera Link Stream

To further differentiate the pixel streams, the Camera Link stream has an edge detection and overlay
section. The pixel stream is first pre-processed by the Bilateral Filter block. This block smooths the
image while preserving edges, and so it is a good choice for noise suppression prior to edge
detection. The Edge Detector block detects edges using the Sobel method. The edges are then
thinned using a [2x2] erosion operation. The thinned edge image is overlaid onto the original Camera
Link image.

2-91



2 HDL-Optimized Algorithm Design

il

@ [ []
1] ool ufix16_Ep ]
[+ Jui7_End (1]
oolean A retPixe int (3) b ufix{_ERETIY
reFine »

[ RGB o

intansity Bilateral Filter

Pixel Stream Alignment

The Camera Link and DMA pixel streams must now be aligned to account for algorithmic delay in the
data path. Aligning the pixel streams is straightforward using the Pixel Stream Aligner block.

Alpha Blending

The DMA input stream is a [1x4] vector whereas the Camera Link input is a [1x3] vector. The extra
column in the DMA input is used to store the alpha channel information. The alpha channel
represents the amount by which each of the pixels from the DMA source should be blended with the
incoming Camera Link stream.
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Results of the Simulation

The output video stream shows the DMA stream alpha blended onto the Camera Link input. The
magenta colored overlay indicates the edges detected in the incoming Camera Link stream.
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Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl( 'DMACameraSourceHDL/Pixel Stream Overlay');

To generate an HDL test bench, use the following command:

makehdltb('DMACameraSourceHDL/Pixel Stream Overlay');
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Using the Line Buffer to Create Efficient Separable Filters

This example shows how to design and implement a separable image filter, which uses fewer
hardware resources than a traditional 2-D image filter.

Traditional image filters operate on a region of pixels and compute the resulting value of one central
pixel using a two-dimensional filter kernel which is a matrix that represents the coefficients of the
filter. Each coefficient is multiplied with its corresponding pixel and the result is summed to form the
value. The region is then moved by one pixel and the next value is computed.

A separable filter is simple in concept: if the two-dimensional filter kernel can be factored into a
horizontal component and a vertical component, then each direction can be computed separately
using one-dimensional filters. This factorization can only be done for certain types of filter kernels.
These kernels are called separable since the parts can be separated. Deciding which kernels are
separable and which are not is easy using linear algebra in MATLAB. Mathematically, the two 1-D
filters convolve to equal the original 2-D filter kernel, but a separable filter implementation often
saves hardware resources.

Introduction

The SeparableFilterHDL.slx system is shown below. The SeptFiltHDL subsystem contains the
separable filter, and also an Image Filter block implementation of the equivalent 2-D kernel as a
reference.

modelname = 'SeparableFilterHDL';
open_system(modelname);

set param(modelname, 'SampleTimeColors', 'on');

set param(modelname, 'SimulationCommand', 'Update');
set param(modelname, 'Open','on');

set(allchild(0), 'Visible', 'off");
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Determine Separable Filter Coefficients

Start by deciding what the purpose of your filter will be and compute the kernel. This example uses a
Gaussian filter of size 5x5 with a standard deviation of 0.75. This filter has a blurring effect on images
and is often used to remove noise and small details before other filtering operations, such as edge
detection. Notice that the Gaussian filter kernel is circularly symmetric about the center.

Hg = fspecial('gaussian',[5,5],0.75)

Hg

0.0002 0.0033 0.0081 0.0033 0.0002
0.0033 0.0479 0.1164 0.0479 0.0033
0.0081 0.1164 0.2831 0.1164 0.0081
0.0033 0.0479 0.1164 0.0479 0.0033
0.0002 0.0033 0.0081 0.0033 0.0002

To check if the kernel is separable, compute its rank, which is an estimate of the number of linearly
independent rows or columns in the kernel. If rank returns 1, then the rows and columns are related
linearly and the kernel can be separated into its horizontal and vertical components.

rankHg = rank(Hg)

rankHg

1

To separate the kernel, use the svd function to perform singular value decomposition. The svd
function returns three matrices, [U,S, V], such that U*S*V' returns the original kernel, Hg. Since
the kernel is rank 1, S contains only one non-zero element. The components of the separated filter are
the first column of each of U and V, and the singular value split between the two vectors. To split the
singular value, multiply both vectors with the square root of S. You must reshape V so that Hh is a
horizontal, or row, vector.

For more information on filter separability, refer to the links at the bottom of this example.

[U,S,V]=svd(Hg)
Hv=abs(U(:,1)*sqrt(S(1,1)))
Hh=abs (V(:,1)'*sqrt(S(1,1)))

U:
-0.0247 -0.8445 -0.5309 0.0665 -0.0000
-0.3552 0.3274 -0.5123 -0.0648 0.7071
-0.8640 -0.2416 0.4345 0.0796 0.0000
-0.3552 0.3274 -0.5123 -0.0648 -0.7071
-0.0247 -0.1190 0.0663 -0.9904 -0.0000

S:
0.3793 0 0 0 0
0 0.0000 0 0 0
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0 0 0.0000 0 0
0 0 0 0.0000 0
0 0 0 0 0.0000
V:
-0.0247 0.1147 0.9846 -0.1298 0.0000
-0.3552 0.5987 -0.0646 0.1062 0.7071
-0.8640 -0.4906 0.0208 -0.1114 -0.0000
-0.3552 0.5987 -0.0646 0.1062 -0.7071
-0.0247 -0.1714 0.1478 0.9737 0.0000
Hv =
0.0152
0.2188
0.5321
0.2188
0.0152
Hh =

0.0152 0.2188 0.5321 0.2188 0.0152

You can check your work by reconstructing the original kernel from these factored parts and see if
they are the same to within floating-point precision. Compute the check kernel, Hc, and compare it to
the original Hg using a tolerance.

Hc = Hv * Hh;
equalTest = all(Hc(:)-Hg(:) < 5*max(eps(Hg(:))))
equalTest =

logical

1

This result proves that Hv and Hh can be used to recreate the original filter kernel.

Fixed-Point Settings

For HDL code generation, you must set the filter coefficients to fixed-point data types. When picking
fixed-point types, you must consider what happens to separability when you quantize the kernel.

First, quantize the entire kernel to a nominal data type. This example uses a 10-bit fixed-point
number. Let the fixed-point tools select the best fraction length to represent the kernel values. Do the
same conversion for the horizontal and vertical component vectors.

Hvfi = fi(Hv,0,10);
Hhfi = fi(Hh,0,10);
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In this case, the best-precision 10-bit answer for Hg has 11 fractional bits, while Hv and Hh use only
10 fractional bits. This result makes sense since Hv and Hh are multiplied and added together to
make the original kernel.

Now you must check if the quantized kernel is still rank 1. Since the rank and svd functions do not
accept fixed-point types, you must convert back to doubles. This operation does not quantize the
results, as long as the fixed-point type is smaller than 53 bits, which is the effective mantissa size of
doubles.

rankDouble rank(double(Hgfi))

rankDouble

3

This result shows that quantization can have a dramatic effect on the separability: since the rank is
no longer 1, the quantized filter does not seem to be separable. For this particular filter kernel, you
could experiment with the quantized word-length and discover that 51 bits of precision are needed in
order for the rank function to return 1 after quantization. Actually, this result is overly conservative
because of quantization of near-zero values within the rank function.

Instead of expanding the fixed-point type to 51 bits, add a tolerance argument to the rank function to
limit the quantization effects.

rankDouble2048 rank (double(Hgfi),1/2048)

rankDoub1e2048

1

This result shows that the quantized kernel is rank 1 within an 11-bit fractional tolerance. So, the 11-
bit separated coefficients are acceptable after all.

Another quantization concern is whether the fixed-point filter maintains flat field brightness. The
filter coefficients must sum to 1.0 to maintain brightness levels. For a normalized Gaussian filter such
as this example, the coefficient sum is always 1.0, but this sum can be moved away from 1.0 by fixed-
point quantization. It can be critical in video and image processing to maintain exactly 1.0, depending
on the application. If you imagine a chain of filters, each one of which raises the average level by
around 1%, then the cumulative error can be large.

sumHg = sum( Hg(:) )
sumHgfi = sum( Hgfi(:) )

sumHg =

1.0000

sumHgfi =

1
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 15
FractionLength: 11

In this case, the sums of the double-precision Hg and the fixed-point Hgfi are indeed 1.0. If
maintaining brightness levels to absolute limits is important in your application, then you might have
to manually adjust the filter coefficient values to maintain a sum of 1.

Finally, check that the combination of the quantized component filters still compares to the quantized
kernel. By default, the fi function uses full precision on the arithmetic expression. Use convergent
rounding since there are some coefficient values very near the rounding limit.

Hcfi = fi(Hvfi * Hhfi,0,10, 'fimath',fimath('RoundingMethod"', 'Convergent'));
equalTest = all( Hcfi(:)==Hgfi(:) )
equalTest =

logical

1

This result confirms that the fixed-point, separated coefficients achieve the same filter as the 2-D
Gaussian kernel.
Implementing the Separable Filter

To see the separable filter implementation, open the Separable Filter subsystem that is inside the
SepFiltHDL subsystem.

open_system([modelname '/SepFiltHDL/Separable Filter'], 'force');

This subsystem selects vertical and horizontal vectors of pixels for filtering, and performs the filter
operation.

The Line Buffer outputs a column of pixels for every time step of the filter. The Line Buffer also pads
the edges of the image. This model uses Padding method: Constant, with a value of 0. The
shiftEnable output signal is normally used to control a horizontal shift register to compile a 2-D pixel
kernel. However, for a separable filter, you want to work in each direction separately. This model uses
the output pixel column for the vertical filter, and uses the shiftEnable signal later to construct the
horizontal pixel vector.

The separated horizontal and vertical filters are symmetric, so the model uses a pre-adder to reduce
the number of multipliers even further. After the adder, a Gain block multiplies the column of pixels
by the Hv vector. The Gain parameter is set to Hv and the parameter data type is fixdt (0,10). The
resulting output type in full-precision is ufix18 En10. Then a Sum block completes the vertical
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filter. The Sum block is configured in full-precision mode. The output is a scalar of ufix21 Enl0
type.

There are many pipelining options you could choose, but since this design is simple, manual
pipelining is quick and easy. Adding delays of 2 cycles before and after the Gain multipliers ensures
good speed when synthesized for an FPGA. A delay of 3 cycles after the Sum allows for it to be
sufficiently pipelined as well. The model balances these delays on the pixelcontrol bus and the
shiftEnable signal before going to the horizontal dimension filter.

The best way to create a kernel-width shift register is to use a Tapped Delay block, which shifts in a
scalar and outputs the register values as a vector. For good HDL synthesis results, use the Tapped
Delay block inside an enabled subsystem, with the Synchronous marker block.

The output of the Tapped Delay subsystem is a vector of 5 horizontal pixels ready for the horizontal
component of the separable filter. The model implements a similar symmetric pre-add and Gain block,
this time with Hh as the parameter. Then, a Sum block and similar pipelining complete the horizontal
filter. The final filtered pixel value is in the full-precision data type ufix34 En20.

Many times in image processing you would like to do full-precision or at least high-precision
arithmetic operations, but then return to the original pixel input data type for the output. This
subsystem returns to the original pixel type by using a Data Type Conversion block set to uint8, with
Nearest rounding and saturation.

The Vision HDL Toolbox blocks force the output data to zero when the output is not valid, as indicated
in the pixelcontrol bus output. While not strictly required, this behavior makes testing and debugging
much easier. To accomplish this behavior, the model uses a Switch block with a Constant block set to
0.

Resource Comparison

The separable 5x5 filter implementation uses 3 multipliers in the vertical direction and 3 multipliers
in the horizontal direction, for a total of 6 multipliers. A traditional image filter usually requires 25
multipliers for a 5x5 kernel. However, the Image Filter block takes advantage of any symmetry in the
kernel. In this example the kernel has 8-way and 4-way symmetry, so the Image Filter only uses 5
multipliers. In general there are savings in multipliers when implementing a separable filter, but in
this case the 2-D implementation is similar.

The separable filter uses 4 two-input adders in each direction, 2 for the pre-add plus 2 in the Sum, for
a total of 8. The Image Filter requires 14 adders total, with 10 pre-add adders and 4 final adders. So
there is a substantial saving in adders.

The Image Filter requires 25 registers for the shift register, while the separable filter uses only 5
registers for the shift register. Each adder also requires a pipeline register so that is 8 for the
separable case and 14 for the traditional case. The number of multiplier pipeline registers scales
depending on the number of multipliers.

The separable filter uses fewer adders and registers than the 2-D filter. The number of multipliers is
similar between the two filters only because the 2-D implementation optimizes the symmetric
coefficients.

Results of the Simulation

The resulting images from the simulation of the separable filter and the reference Image Filter are
very similar. Using the fixed-point settings in this example, the difference between the separable filter
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and the reference filter never exceeds one bit. This difference is a 0.1% difference or greater than 54
dB PSNR between the filtered images overall.

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.
makehdl('SeparableFilterHDL/SepFiltHDL")

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. Reduce the simulation time before generating the test bench.

makehdltb('SeparableFilterHDL/SepFiltHDL")

The part of this model that you can implement on an FPGA is the part between the Frame To Pixels
and Pixels To Frame blocks. The SepFiltHDL subsystem includes both the separable algorithm and
the traditional 2-D implementation for comparison purposes.

Simulation in an HDL Simulator

Now that you have HDL code, you can simulate it in your HDL simulator. The automatically generated
test bench allows you to prove that the Simulink simulation and the HDL simulation match.

Synthesis for an FPGA

You can also synthesize the generated HDL code in an FPGA synthesis tool, such as Xilinx Vivado. In a
Virtex-7 FPGA (xc7v585tffg1157-1), the filter design achieves a clock rate of over 250 MHz.

The utilization report shows that the separable filter uses fewer resources than the traditional image
filter. The difference in resource use is small due to the symmetry optimizations applied by the Image

Filter block.
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Going Further

The filter in this example is configured for Gaussian filtering but other types of filters are also
separable, including some that are very useful. The mean filter, which has a kernel with coefficients
that are all 1/N, is always separable.

Hm = ones(3)./9
rank (Hm)

Hm =
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0.1111 0.1111 0.1111
0.1111 0.1111 0.1111
0.1111 0.1111 0.1111

ans =

Or the Sobel edge-detection kernel:
Hs = [10 -1; 20 -2; 10 -1]

rank(Hs)
Hs =
1 0 -1
2 0 -2
1 0 -1
ans =
1

Or gradient kernels like this:
Hgrad = [1 2 3; 2 4 6; 3 6 9]

rank(Hgrad)
Hgrad =
1 2 3
2 4 6
3 6 9
ans =
1

Separability can also be applied to filters that do not use multiply-add, such as morphological filters
where the operator is min or max.

Conclusion

You have used linear algebra to determine if a filter kernel is separable or not, and if it is, you learned
how to separate the components using the svd function.

You explored the effects of fixed-point quantization and learned that it is important to work with
precise values when calculating rank and singular values. You also learned about the importance of
maintaining DC gain. Finally you learned why separable filters can be implemented more efficiently
and how to calculate the savings.
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Image Pyramid

Image Pyramid

This example shows how to generate multi-level image pyramid pixel streams from an input stream.
This model derives multiple pixel streams by downsampling the original image in both the horizontal
and vertical directions, using Gaussian filtering. This type of filter avoids aliasing artifacts. The
implementation uses an architecture suitable for FPGAs.

Image pyramid is used in many image processing applications such as image compression, object
detection and recognition using techniques such as convolutional neural network (CNN) or aggregate
channel features (ACF). Image pyramid is also similar to scale-space representation.

The example model takes a 240p video input and produces three output streams: 160x120, 80x60,
and 40x30.

modelname = 'ImagePyramidHDL';
open_system(modelname);

set param(modelname, 'SampleTimeColors', 'on');

set param(modelname, 'SimulationCommand', 'Update');
set _param(modelname, 'Open','on');

set(allchild(0), 'Visible', 'off");
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Each level of the pyramid contains a Line Buffer block and a downsampling filter.

open_system([modelname '/ImagePyramidTop/ResamplingPyramidFilter'], 'force');
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Filter Coefficients

The approximate Gaussian filter coefficients in [1] have been used in a number of image pyramid
implementations. These coefficients are given by:

format long

Hh = [1 4 6 4 1]./16;
Hv = Hh';

Hg = Hv*Hh

Hg =

Columns 1 through 3

0.003906250000000 0.015625000000000 0.023437500000000
0.015625000000000 0.062500000000000 0.093750000000000
0.023437500000000 0.093750000000000 0.140625000000000
0.015625000000000 0.062500000000000 0.093750000000000
0.003906250000000 0.015625000000000 0.023437500000000
Columns 4 through 5

0.015625000000000 0.003906250000000

0.062500000000000 0.015625000000000

0.093750000000000 0.023437500000000

0.062500000000000 0.015625000000000

0.015625000000000 0.003906250000000

The results are similar to but not exactly the same as the Gaussian kernel with a 1.0817797 standard-
deviation. So, Hg is an approximate Gaussian kernel.

Hf = fspecial('gaussian',5,1.0817797)

Hf

Columns 1 through 3

0.004609023214619
0.016606534868404

0.016606534868404
0.059834153028525

0.025458671096979
0.091728830511040
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0.025458671096979
0.016606534868404
0.004609023214619

.091728830511040  0.140625009648116
.059834153028525  0.091728830511040
.016606534868404  0.025458671096979

[oNoNO]

Columns 4 through 5

0.016606534868404 0.004609023214619
0.059834153028525 0.016606534868404
0.091728830511040 0.025458671096979
0.059834153028525 0.016606534868404
0.016606534868404 0.004609023214619

The filter, Hg, is obviously separable, since it was constructed from horizontal and vertical vectors.
Therefore, a separable filter implementation is a good choice. Many of the coefficient values are
powers of two or a combination of only two powers of two. These values mean that the filter
implementation can replace multiplication with shift and add techniques such as canonical signed
digit (CSD). Each vector in the separable representation is also symmetric, so the filter
implementation uses a symmetry pre-adder to further reduce the number of operations.

Downsampling

After low-pass filtering with the approximate Gaussian filter above, the model then downsamples the
pixel stream by two in both the horizontal and vertical directions. This is primarily accomplished by
alternating the valid signal every other pixel. The model also recreates the other pixelcontrol bus
signals.

The model includes horizontal and vertical counters that compare the number of output pixels and
lines with the mask parameters for active pixels and lines. The model uses these counts to recreate
the end of line (hEnd) and end of frame (vEnd) signals.

After downsampling once, the pixelcontrol bus valid signal alternates high and then low every
other pixel. After the second downsample, it alternates with a pattern of one valid pixel followed by
three non-valid pixels. In some applications, you may want to collect all the valid pixels into a
continuously valid period of time. The Pixel Stream FIFO block, used between downsample stages,
produces continuous valid pixels for each line.

Each ResamplingPyramidFilter subsystem accepts parameters for the output frame size. These
numbers must be integers, and a factor of two smaller than the input image. If the input number of
pixels per line is odd rather than even, then round down to the next integer. For example, if the input
size is 25 pixels per line, the requested output size must be 12 pixels per line.

Going Further

The Gaussian filter kernel used in traditional image pyramid is not the only low-pass filter that could
be used. Using an edge-preserving low-pass filter, such as a bilateral filter, with different kernel sizes,
would preserve more detail in the pyramid.

It is sometimes helpful to compute the difference between two levels of an image pyramid. This
algorithm is called a Laplacian pyramid. The smaller level is upsampled to same size as the larger
level, and filtered. The filter is usually a scaled version of the same approximate Gaussian filter used
in this model. The difference between layers represents the information lost in the downsampling
process. A Laplacian pyramid can be used for applications including coring for noise removal,
compositing images taken at different times or with different focal lengths, and many others.
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A potential limitation of this model is that there is fairly high latency between the output streams.
This latency occurs because the second and third levels depend on the output from the previous level.
This could be avoided by creating parallel filters operating on more lines. This example implements a
5-by-5 filter that stores 5 lines at each level. A lower latency parallel implementation requires 13 lines
of storage for a two-level filter or 103 lines for a three-level filter. This is not generally a cost-effective
trade-off.

On FPGAs, line buffer memories are typically implemented using block RAMs. Smaller memories can
be implemented in the FPGA fabric, and are known as distributed RAMs. Your synthesis tool chooses
block or distributed RAM depending on the resources of your device. As the line size becomes smaller
due to downsampling, distributed RAMs can be more efficient. In this example, the Line Buffer blocks
in each level reserve space for up to 2k pixels per line. This size is the default size for the Line Buffer,
and accommodates up to 1080p format video. To target distributed RAMs, specify a small power of
two for the Line buffer size parameter. In this example, you could set the line buffer sizes of the
three levels to 256, 128, and 64.
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Stereo Disparity using Semi-Global Block Matching

This example shows how to compute disparity between left and right stereo camera images using the
Semi-Global Block Matching algorithm. This algorithm is suitable for implementation on an FPGA.

Distance estimation is an important measurement for applications in Automated Driving and
Robotics. A cost-effective way of performing distance estimation is by using stereo camera vision.
With a stereo camera, depth can be inferred from point correspondences using triangulation. Depth
at any given point can be computed if the disparity at that point is known. Disparity measures the
displacement of a point between two images. The higher the disparity, the closer the object.

This example computes disparity using the Semi-Global Block Matching (SGBM) method, similar to
the disparity (Computer Vision Toolbox) function. The SGBM method is an intensity-based
approach and generates a dense and smooth disparity map for good 3D reconstruction. However, it is
highly compute-intensive and requires hardware acceleration using FPGAs or GPUs to obtain real-
time performance.

The example model presented here is FPGA-hardware compatible, and can therefore provide real-
time performance.

Introduction

Disparity estimation algorithms fall into two broad categories: local methods and global methods.
Local methods evaluate one pixel at a time, considering only neighboring pixels. Global methods
consider information that is available in the whole image. Local methods are poor at detecting sudden
depth variation and occlusions, and hence global methods are preferred. Semi-global matching uses
information from neighboring pixels in multiple directions to calculate the disparity of a pixel.
Analysis in multiple directions results in a lot of computation. Instead of using the whole image, the
disparity of a pixel can be calculated by considering a smaller block of pixels for ease of computation.
Thus, the Semi-Global Block Matching (SGBM) algorithm uses block-based cost matching that is
smoothed by path-wise information from multiple directions.

Using the block-based approach, this algorithm estimates approximate disparity of a pixel in the left
image from the same pixel in the right image. More information about Stereo Vision is available here.
Before going into the algorithm and implementation details, two important parameters need to be
understood: Disparity Levels and Number of Directions.

Disparity Levels: Disparity levels is a parameter used to define the search space for matching. As
shown in figure below, the algorithm searches for each pixel in the Left Image from among D pixels in
the Right Image. The D values generated are D disparity levels for a pixel in Left Image. The first D
columns of Left Image are unused because the corresponding pixels in Right Image are not available
for comparison. In the figure, w represents the width of the image and h is the height of the image.
For a given image resolution, increasing the disparity level reduces the minimum distance to detect
depth. Increasing the disparity level also increases the computation load of the algorithm. At a given
disparity level, increasing the image resolution increases the minimum distance to detect depth.
Increasing the image resolution also increases the accuracy of depth estimation. The number of
disparity levels are proportional to the input image resolution for detection of objects at the same
depth. This example supports disparity levels from 8 to 128 (both values inclusive). The explanation
of the algorithm refers to 64 disparity levels. The models provided in this example can accept
input images of any resolution.
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Number of Directions: In the SGBM algorithm, to optimize the cost function, the input image is
considered from multiple directions. In general, accuracy of disparity result improves with increase in
number of directions. This example analyzes five directions: left-to-right (A1), top-left-to-bottom-right
(A2), top-to-bottom (A3), top-right-to-bottom-left (A4), and right-to-left (A5).

N

5 Directions

SGBM Algorithm

/

The SGBM algorithm takes a pair of rectified left and right images as input. The pixel data from the
raw images may not have identical vertical coordinates because of slight variations in camera
positions. Images need to be rectified before performing stereo matching to make all epi-polar lines
parallel to the horizontal axis and match vertical coordinates of each corresponding pixel. For more
details on rectification, please see rectifyStereoImages (Computer Vision Toolbox) function. The
figure shows a block diagram of the SGBM algorithm, using five directions.

Matching Cost Calculation

Directional Cost Calculation
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The SGBM algorithm implementation has three major modules: Matching Cost Calculation,
Directional Cost Calculation and Post-processing.
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Many methods have been explored in the literature for computing matching cost. This example
implementation uses the census transform as explained in [2]. This module can be divided into two
steps: Center-Symmetric Census Transform (CSCT) of left and right images and Hamming Distance
computation. First, the model computes the CSCT on each of the left and right images using a sliding
window. For a given pixel, a 9-by-7 pixel window is considered around it. CSCT for the center pixel in
that window is estimated by comparing the value of each pixel with its corresponding center-
symmetric counterpart in the window. If the pixel value is larger than its corresponding center-
symmetric pixel, the result is 1, otherwise the result is 0. The figure shows an example 9-by-7 window.
The center pixel number is 31. The Oth pixel is compared to the 62nd pixel (blue), the 1st pixel is
compared to the 61st pixel (red), and so on, to generate 31 results. Each result a single bit output and
the result of the whole window is arranged as a 31-bit number. This 31-bit number is the CSCT output
for each pixel in both images.

0

112

31

59 | 60 | 61

62

In the Hamming Distance module, the CSCT outputs of the left and right images are pixel-wise XOR'd
and set bits are counted to generate the matching cost for each disparity level. To generate D
disparity levels, D pixel-wise Hamming distance computation blocks are used. The matching cost for

D disparity levels at a given pixel position, p, in the left image is computed by computing the

Hamming distance with (p to D+p) pixel positions in the right image. The matching cost, C(p,d), is
computed at each pixel position, p, for each disparity level, d. The matching cost is not computed for
pixel positions corresponding to the first D columns of the left image.

The second module of SGBM algorithm is directional cost estimation. In general, due to noise, the
matching cost result is ambiguous and some wrong matches could have lower cost than correct ones.
Therefore additional constraints are required to increase smoothness by penalizing changes of
neighboring disparities. This constraint is realized by aggregating 1-D minimum cost paths from
multiple directions. It is represented by aggregated cost from r directions at each pixel position,
S(p,d), as given by

Sip,d) = Z Lo(p,d)

The 1-D minimum cost path for a given direction, L r(p,d), is computed as shown in the equation.
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Lip—rd—1) = previous cost of pizel in r direction at disparity d — 1
Lip—r,d+ 1) = previous cost of pivel in r divection at disparity d + 1

min Le(p — v, i) = minimum cost of picel in v direction for previous computation
1

Fl, P2 = penalty for disconfinuity

As mentioned earlier, this example uses five directions for disparity computation. Propagation in each
direction is independent. The resulting disparities at each level from each direction are aggregated
for each pixel. Total cost is the sum of the cost calculated for each direction.

The third module of SGBM algorithm is Post-processing. This module has three steps: minimum cost
index calculation, interpolation, and a uniqueness function. Minimum cost index calculation finds the
index corresponding to the minimum cost for a given pixel. Sub-pixel quadratic interpolation is
applied on the index to resolve disparities at the sub-pixel level. The uniqueness function ensures
reliability of the computed minimum disparity. A higher value of the uniqueness threshold marks
more disparities unreliable. As a last step, the negative disparity values are invalidated and replaced
with -1.

HDL Implementation

The figure below shows the overview of the example model. The blocks leftimage and rightimage
import a stereo image pair as input to the algorithm. In the Input subsystem, the Frame To Pixels
block converts input images from the leftimage and rightImage blocks to a pixel stream and
accompanying control signals in a pixelcontrol bus. The pixel stream is passed as input to the
SGBMHDLAlgorithm subsystem which contains three computation modules described above:
matching cost calculation, directional cost calculation, and post-processing. The output of the
SGBMHDLAlgorithm subsystem is a disparity value pixel stream. In the Output subsystem, the Pixels
To Frame block converts the output to a matrix disparity map. The disparity map is displayed using
the Video Viewer block.

modelname = 'SGBMDisparityExample';
open_system(modelname);

set param(modelname, 'SampleTimeColors"', 'off');

set param(modelname, 'Open','on');

set param(modelname, 'SimulationCommand', 'Update');
set(allchild(0), 'Visible"', 'off');
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FPGA Implementation of Stereo Disparity using SGBM

VideoWiewer
pixsilaft | pinelLeft
leflimageG40x480.bmp Image | laftimg pixelDisparity | pielin frama0ut P framain
Il
leftimage .
pixsdRight | pixelRight
righilmagef40x420_ bmdmage | ightimg chriDispanity busin walidOut
pixelBus
rightlmage

Input SGEMHDLAIgarithm Output

How to Use This Model?

Step 1 : Pravide the path to rectified input images in the leftimage and rightlmage blocks.

Step 2 - Rum simulation and observe the output in the VideoWiewer. The result is exported to the workspace
with variable names dispMap and dispMapValid.

Parameter Selection:

Step 1 : Double-click the SGBMHDLAIgorithm block.

Step 2 : Enter Disparity Levels - an integer value between 8 and 128 [Default=64]

Step 3 : Enter a Uniqueness Threshold - an integer value between 5 and 15 [Default=5]

Matching Cost Calculation

The matching cost calculation is again separated into two parts: CSCT computation and Hamming
distance calculation. CSCT is calculated on each 9-by-7 pixel window by aligning each group of pixels
for comparison using Tapped Delay (Simulink) blocks, For Each Subsystem (Simulink) blocks and
buffers. The input pixels are padded with zeros to allow CSCT computation for the corner pixels. The
resulting stream of pixels is passed to ctLogic subsystem. Figure below shows ctLogic subsystem
which uses the Tapped Delay block to generate a group of pixels. The pixels are buffered for
imgColSize cycles, where imgColSize is the number of pixels in an image line. A group of pixels that
is aligned for comparison is generated from each row. The For Each block and Logical Operator block
replicate the comparison logic for each pixel of the input vector size. To implement a 9-by-7 window,
the model uses four such For Each blocks. The result generated by each For Each block is a vector
which is further concatenated to form a vector of size 31-bits. After Bit Concat (HDL Coder) is used,
the output data type is uint5. CSCT and zero-padding operations are performed separately on the
left and right input images and the results are passed to the Hamming Distance subsystem.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/MatchingCost/CensusTransform/ctLogic', 'force'
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In the Hamming Distance subsystem, the 65th result of the left CSCT is XOR'd with the 65th to 2nd
results of the right CSCT. The set bits are counted to obtain Hamming distance. This distance must be
calculated for each disparity level. The right CSCT result is passed to the enabledTappedDelay
subsystem to generate a group of pixels which is then XOR'd with the left CSCT result using For Each
block. The For Each block also counts the set bits in the result. The For Each block replicates the
Hamming distance calculation for each disparity level. The result is a vector, with 64 disparity levels
corresponding to each pixel. This vector is the Matching Cost, and it is passed to the Directional Cost
subsystem.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/MatchingCost/HammDistA', 'force');
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Directional Cost Calculation

The Directional Cost subsystem computes disparity at each pixel in multiple directions. The five
directions used in the example are left-to-right (A1), top-left-to-bottom-right (A2), top-to-bottom (A3),
top-right-to-bottom-left (A4), and right-to-left (A5). As the cost aggregation at each pixel in each
direction is independent of each other, all five directions are implemented concurrently.

Each directional analysis is investigating the previous cost value with respect to the current cost
value. The value of previous cost required to compute the current cost for each pixel depends on the
direction under consideration. The figure below shows the position of the previous cost with respect
to the current cost under computation, for all five directions.

. Current cost value . Previous cost value

i

" B -

Left to Right (A1) Top Left to Bottom Right (A2) Top to Bottorn (A3) Top Right to Bottom Left (A4) Right to Left (AS)

In the figure above, the blue box indicates the position of the current pixel for which current cost
values are computed. The red box indicates the position of the previous cost values to be used for
current cost computation. For A1, the current cost becomes the previous cost value for the next
computation when traversing from left to right. Thus, the current cost value should be immediately
fed back to compute the next current cost, as described in [3]. For A2, when traversing from left to
right, current cost value should be used as the previous cost value after imgColSize+1 cycles.
Current cost values are hence buffered for cycles equal to imgColSize+1 and then fed back to
compute the next current cost.

Similarly, for A3 and A4, the current cost values are buffered for cycles equal to imgColSize and

imgColSize-1, respectively. However, for A5, when traversing from left to right, the previous cost
value is not available. Thus, the direction of traversal to compute A5 is reversed. This adjustment is
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done by reversing the input pixels of each row. The current cost value then becomes the previous cost
value for the next current cost computation, similar to Al.

The 1-D minimum cost path computes the current cost at d disparity position, using the Matching
Cost value, the previous cost values at disparities d-1, d, and d+1, and the minimum of the previous
cost values. The figure below shows the minimum cost path subsystem, which computes the current
cost at a disparity position for a pixel.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/DirectionalCost/LeftToRight/1rSubsystem/minCo:

GB

matchingCost

h

@B

prevCost_d

a o

prevCost_d-1 + ¥

+
For Each i
i —+ D
= currCost
For Each - C
i 4 : |+
prevCost_d+1

minPrevCost

The For Each block is used to replicate the minimum cost path calculation for each disparity level, for
each direction. The figure below shows the implementation of Al for 64 disparity levels. As shown in
the figure, 64 minimum cost path calculations are generated as represented by minCostPath
subsystem. The matching cost is an input from the Hamming Distance subsystem. The current cost
computed by the minCostPath subsystem is immediately fed back to itself as the previous cost values,
for the next current cost computation. Thus, values for prevCost d are now available. Values for
prevCost_d-1 are obtained by shifting the 1st to 63rd fed-back values to the 2nd to 64th positions.
The d-1 subsystem contains a Selector (Simulink) block that shifts the position of the values, and fills
in zero at the 1st position.

Similarly, values for prevCost d+1 position are obtained by shifting the 2nd to 64th feedback values
to the 1st to 63rd position and inserting a zero at the 64th position. The current cost computed is also
passed to the min block to compute the minimum value from the current cost values. This value is fed
back to the minPrevCost input of the minCostPath subsystem. The next current cost is then computed
by using the current cost values, acting as previous cost values, in the next cycle for Al. Since the
minimum cost of disparity levels from the previous set is immediately needed for the current set, this
feedback path is the critical path in the design.
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open_system('SGBMDisparityExample/SGBMHDLAlgorithm/DirectionalCost/LeftToRight/lrSubsystem', 'for
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The current cost computations for A2, A3, and A4 are implemented in the same manner. Since the
current cost value is not immediately required for these directions, there is a buffer in both feedback
paths. This buffer prevents this feedback path from being the critical path in the design. The figure
below shows the A3 implementation with a buffer in the feedback paths.
open_system('SGBMDisparityExample/SGBMHDLAlgorithm/DirectionalCost/TopToBottom/tbSubsystem', 'for
o
enable
Bl
2 } # Matching_Cost ul T
matchCostin " | -
i zd
P prev_cost_d 5.1.’0 ._p Ly F
-—D praw_cost_d-1 . curm_cost '-"@
T tbCost
d-1 v
d+1
s min_prev_cost

minCosiPath

The current cost calculation for A5 has additional logic to reverse the rows at input and again reverse
the rows at output to match the pixel positions for the total cost calculation. A single buffer of
imgColSize cycles achieves this reversal. Since all directions are calculated concurrently, the time
required to reverse the rows must be compensated for on the other paths. Delay equivalent to
2*imgColSize cycles is introduced in the other four directions. To optimize resources, instead of
buffering 64 values of matching cost for each pixel, the 31-bit result of CSCT is buffered. A separate
Hamming Distance module is then required to compute matching cost for A5. This design reduces on-
chip memory usage. The rows are reversed after the CSCT computation and matching cost is
calculated using a separate Hamming Distance module that provides the Matching Cost input to A5.
Also, dataAligner subsystem is used to remove data discontinuity for each row before passing it to
Hamming Distance subsystems. This helps easy synchronization of data at time of aggregation. The

2-115



2 HDL-Optimized Algorithm Design

2-116

current cost obtained from all five directions at each pixel are aggregated to obtain the total cost at
each pixel. The total cost is passed to the Post-processing subsystem.

Post-Processing

In the post-processing subsystem, the index of the minimum cost is calculated at each pixel position
from 64 disparity levels by using Min blocks in a tree architecture. The index value obtained is the
disparity of each pixel. Along with minimum cost index computation, the minimum cost value at the
computed index, and the cost values at index-1 and index+1 are also computed. The
Minimum Cost Index subsystem implements tree architecture to compute a minimum value from 128
values. 64 disparity values are padded with 64 more values to make a vector of 128 values. Minimum
value is computed from this vector with 128 values. In case, a vector with 128 values is available no
value is padded to a vector or in other words, vector is passed directly for minimum value calculation.
Variant Subsystem, Variant Model (Simulink) is used to select between logic using variant subsystem
variables. Sub-pixel quadratic interpolation is then applied to the index to resolve disparity at sub-
pixel level. Also, a uniqueness function is applied to the index calculated by min blocks, to ensure
reliable disparity results. As a last step, invalid disparities are identified and replaced with -1.

Model Parameters

The model presented here takes disparity levels and uniqueness threshold as input parameters as
shown in figure. Disparity levels is an integer value from 8 to 128 with the default value of 64. Higher
value of disparity level reduces the minimum distance detected. Also, for larger input image size
larger disparity level helps better detection of depth of object. The uniqueness threshold must be a
positive integer value, between 0 and 100 with a typical range from 5 to 15. Lower value of
uniqueness threshold marks more disparities reliable. The default value of uniqueness threshold is 5.

pixelLeft

pixelDisparity

plxelnght |"&l Block Parsmeters: SGEMHDLANorithm x
Select Disparity Levels

Disparity Livels | 64

Select Uniqueness Threshold

Uniqueness Threshold |5
ctrl

.
g T
SGBMHDLAlgorithm

Simulation and Results

The example model can be simulated by specifying a path for the input images in the leftimage and
rightImage blocks. The example uses sample images of size 640-by-480 pixels. The figure shows a
sample input image and the calculated disparity map. The model exports these calculated disparities
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and a corresponding valid signal to the MATLAB workspace, using variable names dispMap and
dispMapValid respectively. The output disparity map is 576-by-480 pixels, since the first 64 columns
are unused in the disparity computation. The unused pixels are padded with 0 in Output subsystem to
generate output image of size 640-by-480 as shown in Video Viewer. A disparity map with colorbar is
generated using the commands shown below. Higher disparity values in the result indicate that the
object is nearer to the camera and lower disparity values indicate farther objects.

dispMapValid = find(dispMapValid == 1);

disparityMap = (reshape(dispMap(dispMapValid(1l:imgRowSize*imgColSize),:),imgColSize,imgRowSize))
figure(); imagesc(disparityMap);

title('Disparity Map');

colormap jet; colorbar;

leftimage640x480 rightimage640x480

Video Viewer

Disparity Map

100

150

200

250

100 200 300 400 500 600

The example model is compatible to generate HDL code. You must have an HDL Coder™ license to
generate HDL code. The design was synthesized for the Intel® Arria® 10 GX (115S2F4511SG) FPGA.
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The table below shows resource utilization for three disparity level at different image resolutions.
Considering one pair of stereo input images as a frame, the algorithm throughput is estimated by
finding the number of clock cycles required for processing the current frame before the arrival of
next frame. The core algorithm throughput, without overhead of buffering input and output data, is
the maximum operating frequency divided by the minimum cycles required between input frames.
For example, for 128 disparity levels and 1280-by-720 image resolution, the minimum cycles to
process the input frame is 938,857 clock cycles/frame. The maximum operating frequency obtained
for algorithm with 128 disparity levels is 61.69 MHz, the core algorithm throughput is computed as
65 frames per second.

% |Disparity Levels | 64 || 96 || 128 |
% |Input Image Resolution || 640 x 480 || 960 x 540 || 1280 x 720 |
% |ALM Utilization [| 45,613 (11%) || 64,225 (15%) || 85,194 (20%) |
% |Total Registers | 49,232 || 64,361 || 85,564 |
% |Total Block Memory Bits || 3,137,312 (6%) || 4,599,744 (9%) || 11,527,360 (21%) |
% |Total RAM Blocks | 264 (10%) [ 409 (16%) [ 741 (28%) |
% |Total DSP Blocks | 5 (4%) || 97 (6%) || 129 (8%) |
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Stereo Image Rectification

This example shows how to implement stereo image rectification for a calibrated stereo camera pair.
The example model is FPGA-hardware compatible and provides real-time performance. This example
compares its results with the Computer Vision Toolbox™ rectifyStereoImages function.

Introduction

A stereo camera is a camera system with two or more lenses with a separate image sensor for each
lens. They are used for distance estimation, making 3-D pictures, and stereoviews. Camera lenses
distort images, and it is difficult to align two cameras to be perfectly parallel. So, the raw images
from a pair of stereo cameras must be rectified. Stereo image rectification projects images onto a
common image plane in such a way that the corresponding points in the two stereo images have the
same row coordinates. This image projection corrects the images to appear as if the two cameras are
parallel.

The algorithm used in this example performs distortion removal and alignment correction in a single
system.

Stereo Image Rectification Algorithm

The stereo image rectification algorithm uses a reverse mapping technique to map the pixel locations
of the output rectified image to the pixels in the input camera image. The diagram shows the four
stages of the algorithm.

Distortion
Coefficients Input left and right images
sterecParams Homography
3 Matrix X u _ Rectified Left Image
(Stereo camera Compute > Inverse > > —
calibration parameters) o G tri Undistorti Int lati
Rectification eometric ndistortion v nterpolation | o e Right Image
Parameters Bounds Transform y > > e

Compute Rectification Parameters: This stage computes rectification parameters from input
stereo camera calibration parameters. These calibration parameters include camera intrinsics,
rotation matrices, translation matrices, and distortion coefficients (radial and tangential). This stage
returns a homography matrix for each camera, and the output bounds. The output bounds are needed
to compute the integer pixel coordinates of the output rectified image, and the homography matrices
are needed to transform integer pixel coordinates in the output rectified image to corresponding
coordinates of the undistorted image.

Inverse Geometric Transform: An inverse geometric transformation translates a point in one image
plane onto another image plane. In stereo image rectification, this operation maps integer pixel
coordinates in the output rectified image to the corresponding coordinates of the input camera image
by using the homography matrix, H. If (p,q) is an integer pixel coordinate in the rectified output
image and (x,y) is the corresponding coordinate of the undistorted image, then this equation
describes the transformation.

[z ¥ 2lixs=[p g 1ix3+* ”:-:ll'.'i
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where H is the homography matrix. To convert from homogeneous to cartesian coordinates, x is set to

x/z and y is set to y/z.

Undistortion: Lens distortions are optical aberrations which may deform the images. There are two
main types of lens distortions: radial and tangential distortions. Radial distortion occurs when light
rays bend more near the edges of a lens than they do at its optical center. Tangential distortion
occurs when the lens and the image plane are not parallel. For distortion removal, the algorithm
maps the coordinates of the undistorted image to the input camera image by using distortion
coefficients.

If (u,v) is the coordinate of the input camera image and (x,y) is the corresponding coordinate of the
undistorted image, then this equation describes the undistortion operation.
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where ™ = I+ U7,
k1, k2 are radial distortion coefficients and P'1, "2 are tangential distortion coefficients.

t = Uradial + Wangential

V = Yradial Vtangential
Inverse geometric transformation and undistortion both contribute to an overall mapping between
the coordinates of the output undistorted rectified image (u,v) and the coordinates of the input
camera image.

Interpolation: Interpolation resamples the image intensity values corresponding to the generated
coordinates. The example uses bilinear interpolation.

11 13
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As shown in the diagram, (u,v) is the coordinate of the input pixel generated by the undistortion
stage. I1, 12, I3, and I4 are the four neighboring pixels, and deltaU and deltaV are the displacements
of the target pixel from its neighboring pixels. This stage computes the weighted average of the four
neighboring pixels by using this equation.

recti fied Pizel = [l = deltall )(1 = deltaV') + L(deltall )1 = deltaV') + Is(1 = deltal7)(deltaV') + Ly (deltal”{deltal”)
HDL Implementation

The figure shows the top-level view of the StereolmageRectificationHDL model. The LeftInputImage
and RightInputImage blocks import the stereo left and right images from files. The Frame To Pixels
blocks convert these stereo image frames to pixel streams with pixelcontrol buses for input to the
HDLStereolmageRectification subsystem. This subsystem performs the inverse geometric transform,
undistortion, and interpolation to generate the rectified output pixel values. The Pixels To Frame
blocks convert the streams of output pixels back to frames. The LeftImageViewer and
RightImageViewer subsystems display the input frames and their corresponding rectified outputs.

izl | laitPixel eftPialRect | pineel frams | leftRect Cutput

leftimage.png  Image #|frame  Frame To Pixels Pixels To Frame | leftinput

il | ctrl validOut | valid

Leftinputimage Leftimage\iewer

o laftCirl IefCtrRect

o rightPixel rightPixelRsct

pixel | pixel frame | rightRectthutput

#|frame  Frame To Pizels Pixels To Frame —{rightInput

rightimage.png Image
ctrl | rightCerl rightCiriRect P ctrl validOut | valid

Rightlnputimage RightimageViewer

HDL StereolmageRectification

The InitFcn of the example model imports the stereo calibration parameters from a data file and
computes the rectification parameters by calling ComputeRectificationParams.m. Alternatively,
you can generate your own set of rectification parameters and provide them as mask parameters of
the InverseGeometricTransform and Undistortion subsystems.

The HDLStereolmageRectification subsystem generates a single pixelcontrol bus from the two
input ctrl busses. The RectifiedCoordinateGeneration subsystem generates the row and column pixel
coordinates of the output rectified and undistorted image. It uses two HDL counters to generate the
row and column coordinates. The InverseGeometricTransform subsystems map these coordinates
onto their corresponding row and column coordinates, (x,y), of the distorted image. The Undistortion
subsystems map the (x,y) coordinates to its corresponding coordinate (u,v) of the input camera
image, using the distortion coefficients and stereo camera intrinsics.

The Interpolation subsystems store the pixel intensities of the input stereo images in a memory and
calculate the addresses of the four neighbors of (u,v) required for interpolation. To calculate each
rectified output pixel intensity, the subsystem reads the four neighbor pixel values and finds their
weighted sum.
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Inverse Geometric Transformation

The HDL implementation of inverse geometric transformation multiplies the coordinates [row col 1]
with the inverse homography matrix. The inverse homography matrix (3-by-3) is a masked parameter
of the InverseGeometricTransformation subsystem. ComputeRectificationParams.m, called in
the InitFcn of the model, generates the homography matrix. The Transformation subsystem
implements the matrix multiplication with Product blocks that multiply by each element of the
homography matrix. The HomogeneousToCartesian subsystem converts the generated homogeneous
coordinates, [x y z] back to the cartesian format, [x y] for further processing. The
HomogeneousToCartesian subsystem uses a Reciprocal block configured to use the ShiftAdd
architecture, and the UsePipelines parameter is set to 'on'. To see these parameters, right-click
the block and select HDL Code > HDL Block Properties. Until this stage, the word length was
allowed to grow with each operation. After the HomogeneousToCartesian subsystem, the word length
of the coordinates is truncated to a size that still ensures precision and accuracy of the generated

coordinates.
col .' ; ¥ ey . x
row ¥
Transformation Homogeneous ToCartesian
& > L&D
cirlin ctriCut
Undistortion

The HDL implementation of Undistortion takes the 3-by-3 camera intrinsic matrix, distortion
coefficients [k1 k2 pl p2], and the reciprocal of fx and fy as masked parameters.
ComputeRectificationParams.m, which is called in the InitFcn of the model, generates these

fr skew cx
0 fu ey
0 0 1

parameters. The intrinsic matrix is defined as

The Undistortion subsystem implements the equations mentioned in the Stereo Image Rectification
Algorithm section by using Sum, Product, and Shift arithmetic blocks. The word length is allowed to
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grow with each operation, and then the Denormalization subsystem truncates the word length to a
size that still ensures the precision and accuracy of the generated coordinates.
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Interpolation
These sections describe the three components inside the Interpolation subsystem.
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Address Generation
The AddressGeneration subsystem takes the mapped coordinate of the input raw image (u,v) as input.

It calculates the displacement deltaU and deltaV of each pixel from its neighboring pixels. It also
rounds the coordinates to the nearest integer toward negative infinity.
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The AddressCalculation subsystem checks the coordinates against the bounds of the input images. If
any coordinate is outside the image dimensions, is capped to the boundary value for further
processing. Next, the subsystem calculates the index of the address of each of the four neighborhood
pixels in the CacheMemory subsystem. The index represents the column of the cache. The index for
each address is determined using the even and odd nature of the incoming column and row
coordinates, as determined by the Extract Bits block.

% |Row || Col || Index ||
% |0dd || 0dd || 1 |
% |Even || 0dd || 2 |
% |0dd || Even || 3 |
% |Even || Even || 4 |

The address of the neighborhood pixels is generated using this equation:

Sizeofeolumn
2

Address = | * nit) + nl’

where nR is the row coordinate, and nC is the column coordinate.

nit=5 -1 ,if row is even nit = == ,if row is odd

e . . ooldl . .
nC' =5 ,if col is even | nC' = =5 ,if col is odd

Once all the addresses and their corresponding indices are generated, they are vectorized using a
Vector Concatenate block. The IndexChangeForMemoryAccess MATLAB Function block rearranges
the addresses in increasing order of their indices. This operation ensures the correct fetching of the
data from the CacheMemory block. The addresses are then given as an input to the CacheMemory
block, and the index, deltaU, and deltaV are passed to the BilinearInterpolation subsystem.
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Cache Memory

The CacheMemory subsystem contains a Simple Dual Port RAM block. The input pixels are buffered
toform [Line 1 Pixel 1 | Line 2 Pixel 1 | Line 1 Pixel 2 | Line 2 Pixel 2]in
the RAM. This configuration enables the algorithm to read all four neighboring pixels in one cycle.
The required size of the cache memory is calculated from the offset and displacement parameters in
ComputeRectificationParams.m script. The displacement is the sum of maximum deviation and
the first row map. The first row map is the maximum value of the input image row coordinate that
corresponds to the first row of the output rectified image. Maximum deviation is the greatest
difference between the maximum and minimum row coordinates for each row of the input image row
map.

The WriteControl subsystem forms vectors of incoming pixels, and vectors of write enables and write
addresses. The AddressGeneration subsystem provides a vector of read addresses. The vector of
pixels returned from the RAM are passed to the BilinearInterpolation subsystem.
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Bilinear Interpolation

The BilinearInterpolation subsystem rearranges the vector of read pixels from the cache to their
original indices. Then, the BilinearInterpolationEquation block calculates a weighted sum of the
neighborhood pixels by using the bilinear interpolation equation mentioned in the Stereo Image
Rectification Algorithm section. The result of the interpolation is the value of the output rectified

pixel.
1} | dettall
deliall
DIENE|UE
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(5 ) p B 2D
rectCirl

cirlin

Simulation and Results

This example uses 960-by-1280 stereo images. The input pixels use the uint8 data type. The example
does not provide multipixel support. Due to the large frame sizes used in this example, simulation can
take a relatively long time to complete.

The figure shows the left and right input images and the corresponding rectified output images. The
results of the StereolmageRectificationHDL model match the output of the rectifyStereoImages
function in MATLAB with an error of +/-1.
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You can generate HDL code for the HDLStereoImageRectification subsystem. You must have an HDL
Coder™ license to generate HDL code. This design was synthesized for the Intel® Arria® 10 GX
(115S2F4511SG) FPGA. The HDL design achieves a clock rate of over 150 MHz. The table shows the

resource utilization for the subsystem.

% |Model Name || StereoImageRectificationHDL ||
% |Input Image Resolution || 960 x 1280 |
% |ALM Utilization | 10884 |
% |Total Registers | 24548 ||
% |Total RAM Blocks | 327 ||
% |Total DSP Blocks | 218 ||
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See Also
rectifyStereoImages
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Low Light Enhancement

This example shows how to enhance low-light images using an algorithm suitable for FPGAs.

Low-light enhancement (LLE) is a pre-processing step for applications in autonomous driving,
scientific data capture, and general visual enhancement. Images captured in low-light and uneven
brightness conditions have low dynamic range with high noise levels. These qualities can lead to
degradation of the overall performance of computer vision algorithms that process such images. This
algorithm improves the visibility of the underlying features in an image.

The example model includes a floating-point frame-based algorithm as a reference, a simplified
implementation that reduces division operations, and a streaming fixed-point implementation of the
simplified algorithm that is suitable for hardware.

LLE Algorithm

This example performs LLE by inverting an input image and then applying a de-haze algorithm on the
inverted image. After inverting the low-light image, the pixels representing non-sky region have low
intensities in at least one color channel. This characteristic is similar to an image captured in hazy
weather conditions [1]. The intensity of these dark pixels is mainly due to scattering, or airlight, so
they provide an accurate estimation of the haze effects. To improve the dark channel in an inverted
low-light image, the algorithm modifies the airlight image based on the ambient light conditions. The
airlight image is modified using the dark channel estimation and then refined with a smoothing filter.
To avoid noise from over-enhancement, the example applies non-linear correction to better estimate
the airlight map. Although this example differs in its approach, for a brief overview of low-light image
enhancement, see “Low-Light Image Enhancement” (Image Processing Toolbox)(Image Processing
Toolbox).

The LLE algorithm takes a 3-channel low-light RGB image as input. This figure shows the block
diagram of the LLE Algorithm.

Haze remaoval

Restaration image

Input | 5 Dark Channel Maon-Linear
image fversion Estimation Correction

_____________________________________________________________________________________________

The algorithm consists of six stages.

1. Scaling and Inversion: The input image I(x,y).e € [r.9.8] s converted to range [0,1] by dividing
by 255 and then inverting pixel-wise.

I(x,
Loarlz, y) (i ."J’:|_

255

oley)=1—TI, . (& y)
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2. Dark Channel Estimation: The dark channel is estimated by finding the pixel-wise minimum across
all three channels of the inverted image [2]. The minimum value is multiplied by a haze factor, =, that
represents the amount of haze to remove. The value of = is between 0 and 1. A higher value means
more haze will be removed from the image.

ino ()

Fielz,y) =2z x min If

[ _|__||l_l'.l

3. Refinement: The airlight image from the previous stage is refined by iterative smoothing. This
smoothing strengthens the details of the image after enhancement. This stage consists of five filter

iterations with a 3-by-3 kernel for each stage. The refined image is stored in Tecpined . 9), These
equations derive the filter coefficients, /i, used for smoothing.

I,-l.fl'”“.r:l_,. ]||:.!‘.If_l|’:| = II'r_,I'-'r.-III'IrII{J'- I!'_,I'_:l * |i|i'. nn = {] ]. 2, :L -11 4.‘\-' I."I J'--:“"""[:': = I,-,.;,-
| [ 1 2 1

where h = T 2 4 2
' l 1 2 1

Let Il'r_fl'.'.-u.l'l.'n(-r1.".I’]l = ‘rl'n filjlrf(-r'- !_ur}

4. Non-Linear Correction: To reduce over-enhancement, the refined image is corrected using a non-
linear correction equation shown below. The constant, 1, represents the mid-line of changing the
dark regions of the airlight map from dark to bright values. The example uses an empirically-derived
value of rt = (.G,

Il" ined L i
f.'..lr'i-r'..ﬂ] = = | f 'l['l J;}]

.f_l'r_f_-r|.l.-|”:'.]".ll'j::|:l 1 ”ﬂl

5. Restoration: Restoration is performed pixel-wise across the three channels of the inverted and
corrected image, Tuir, as shown:

It (xy) — Iye(z,y)
1= Iglz,y)

I store (2, )

6. Inversion: To obtain the final enhanced image, this stage inverts the output of the restoration
stage, and scales to the range [0,255].
I (z,5) = 255 x (1 — I pure)

Ls I.l.lln'l'l Ll I'Il

LLE Algorithm Simplification

The scaling, non-linear correction, and restoration steps involve a divide operation which is not
efficient to implement in hardware. To reduce the computation involved, the equations in the
algorithm are simplified by substituting the result of one stage into the next stage. This substitution
results in a single constant multiplication factor rather than several divides.

Dark channel estimation without scaling and inversion is given by

~):r I, (x,y) where I, (x,y) = 255 min  I“(x, y)
F-1aly) o |"_!.I_|'.l

Lair(z ) =
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The result of the iterative refinement operation on Juir is

fl..l_lrj“”r(.r,lr‘ll:l = = f:'._,".'uh.lll-'llll'-"“-rl‘l}

where
Ili'r_.'-l'.-.'r|-r||.l---|_I|:'r‘-U:I = 'r:'rf-;-'.'lrl'l.-.-l['r' H:' * .llﬂ, n = l“' ]'2' ';5' _1] ‘!"‘- "r:-r‘ff.-n |.r|||_l['r' H:I = Ili-'l'n"li'r' H}

I,

Substituting “r«fi==f into the non-linear correction equation gives

= I ";:- fin rﬂ{'r' -"il}i .
21 [z, y)]* + (255 x m)?

re fined

Tacla, ) -

Substituting Znic into the restoration equation gives

e, y)  I(x,y) 24 ;

Iestore (2, Y) = 1 - I, x,y)*
.'|.1.|.'||:r "-ll} 235 :l-j!?l [2:}:} W Hn'_]l'[ .-:_r.-urn'I:‘ II.Il}l
Subtracting 1 cstore from 1 and multiplying by 255 gives
e R T z ; AL
I, nhaneed s Y) = I'(z,y) x (1 1 [mf. jiu.-rff."'.ra’]'l )

With the intensity midpoint, 1, set to 0.6 and the haze factor, =, set to 0.9, the simplified equation is

" . . 1 14
Lvhanced (T, 4) = If(z,y) % (1 t [ﬁf: fined s ¥) )

In the equation above, the factor multiplied with I"(¢.y) can be called the Enhancement Factor. The

1
constant 1% can be implemented as a constant multiplication rather than a divide. Therefore, the HDL
implementation of this equation does not require a division block.

HDL Implementation

The simplified equation is implemented for HDL code generation by converting to a streaming video
interface and using fixed-point data types. The serial interface mimics a real video system and is
efficient for hardware designs because less memory is required to store pixel data for computation.
The serial interface also allows the design to operate independently of image size and format, and
makes it more resilient to video timing errors. Fixed-point data types use fewer resources and give
better performance on FPGA than floating-point types.

open_system('LLEExample');
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The location of the input image is specified in the LowLightImage block. The LLEBehavioural
subsystem computes the enhanced image using the raw equations as described in the LLE Algorithm
section. The LLESimplified subsystem computes the enhanced image using the simplified equations.
The simpOutputViewer shows the output of the LLESimplified subsystem.

The LLEHDL subsystem implements the simplified equation using a steaming pixel format and fixed-
point blocks from Vision HDL Toolbox. The Input subsystem converts the input frames to a pixel
stream of uint8 values and a pixelcontrol bus using the Frame To Pixel block. The Output
subsystem converts the output pixel stream back to image frames for each channel using the Pixel To
Frame block. The resulting frames are compared with result of the LLESimplified subsystem. The
hdlOutputViewer subsystem and inputViewer subsystem show the enhanced output image and the
low-light input image, respectively.

open_system('LLEExample/LLEHDL");
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IterativeFilter

The LLEHDL subsystem inverts the input uint8 pixel stream by subtracting each pixel from 255.
Then the DarkChannel subsystem calculates the dark channel intensity minimum across all three
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channels. The IterativeFilter subsystem smooths the airlight image using sequential Image Filter
blocks. The bit growth of each filter stage is maintained to preserve the precision. The Enhancement

1
Factor is calculated in EnhancementFactor area. The constant i%i is implemented using a Gain block.
The Pixel Stream Aligner block aligns the input pixel stream with the pipelined, modified stream. The
aligned input stream is then multiplied by the modified pixel stream.

Simulation and Results

The input to the model is provided in the LowLightImage (Image From File) block. This example uses
a 720-by-576 pixel input image with RGB channels. Both the input pixels and the enhanced output
pixels use uint8 data type. The necessary variables for the example are initialized in InitFcn
callback.

The LLEBehavioural subsystem uses floating-point Simulink blocks to prototype the equations
mentioned in the LLE Algorithm section. The LLESimplified subsystem implements the simplified
equation in floating-point blocks, with no divide operation. The LLEHDL subsystem implements the
simplified equation using fixed-point blocks and streaming video interface. The figure shows the input
image and the enhanced output images obtained from the LLESimplified subsystem and the LLEHDL
subsystem.

4. LLEInput = [} x | < &

File Tools View Simulation Help | File Tools View Simulation Help || File Tools View Simulation Help k]
O | & & @ | N IR v [moR:| aa s D

OP® =m Ore >® Pre| =m

Ready

RGB:576x720  T=431780.000 iReady RGB:576x720 | T=431780.000 |Ready RGB:576x720 | T=431780.000

The accuracy of the result can be calculated using the percentage of error pixels. To compute the
percentage of error pixels in the output image, the difference between the pixel value of the
reference output image and the LLEHDL output image should not be greater than one, for each
channel. The percent of pixel values that differ by more than 1 is computed for the three channels.
The simpError subsystem compares the result of the LLEBehavioural subsystem with the result of the
LLESimplified subsystem. The hdIError subsystem compares the result of the LLEHDL subsystem
with the result of the LLESimplified subsystem. The error pixel count is displayed for each channel.
The table shows the percentage of error pixels calculated by both comparisons.
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% error pixels

Model Name / Channel R G B
LLEEBehavioural vs LLESimplified 0 ] 0
LLESimplified vs LLEHDL 0.1649 01671 00477

You can generate HDL code for the LLEHDL subsystem. An HDL Coder™ license is required to
generate HDL code. This design was synthesized for the Intel® Arria® 10 GX (115S2F4511SG) FPGA.
The table shows the resource utilization. The HDL design achieves a clock rate of over 250 MHz.

Model Name LLEHDL
Input Image Resolution T20x 576
ALM Utilization 2464
Total Registers G643

Total Block Memaory Bits h28 328

Total RAM Blocks 56
Total DSF Blocks 11
References

[1]1X. Dong, G. Wang, Y. Pang, W. Li, and J. Wen, "Fast efficient algorithm for enhancement of low
lighting video" IEEE International Conference on Multimedia and Expo, 2011.
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Contrast Limited Adaptive Histogram Equalization

This example shows how to implement a contrast-limited adaptive histogram equalization (CLAHE)
algorithm using Simulink blocks. The example model is FPGA-hardware compatible.

The example uses the adapthisteq function from the Image Processing Toolbox™ as reference to
verify the design.

Introduction

Adaptive histogram equalization (AHE) is an image pre-processing technique used to improve
contrast in images. It computes several histograms, each corresponding to a distinct section of the
image, and uses them to redistribute the luminance values of the image. It is therefore suitable for
improving the local contrast and enhancing the definitions of edges in each region of an image.
However, AHE has a tendency to overamplify noise in relatively homogeneous regions of an image. A
variant of adaptive histogram equalization called contrast-limited adaptive histogram equalization
(CLAHE) prevents this effect by limiting the amplification.

CLAHE Algorithm

Tile Generation
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The CLAHE algorithm has three major parts: tile generation, histogram equalization, and bilinear
interpolation. The input image is first divided into sections. Each section is called a tile. The input
image shown in the figure is divided into four tiles. Histogram equalization is then performed on each
tile using a pre-defined clip limit. Histogram equalization consists of five steps: histogram
computation, excess calculation, excess distribution, excess redistribution, and scaling and mapping
using a cumulative distribution function (CDF). The histogram is computed as a set of bins for each
tile. Histogram bin values higher than the clip limit are accumulated and distributed into other bins.
CDF is then calculated for the histogram values. CDF values of each tile are scaled and mapped using
the input image pixel values. The resulting tiles are stitched together using bilinear interpolation, to
generate an output image with improved contrast.

HDL Implementation

¥

Histogram Equalization
Fipeline 1
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pixelOut

Tiles Bilinear
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FPGA Implementation

Input Image Buffer

h 4

3

This figure shows the block diagram of the HDL implementation of the CLAHE algorithm. It consists
of a tile generation block, a histogram equalization pipeline block, a bilinear interpolation block, and
an input image buffer block. Tiles are generated by modifying the pixelcontrol bus of the pixel
stream for the desired tile size. The pixel stream and the modified pixelcontrol bus are fed to the
histogram equalization pipeline. Two histogram equalization pipelines are required to keep pace with
the input data. They operate in ping-pong manner. Each pipeline contains histogram equalization
modules equal to the number of tiles in the horizontal direction. The histogram equalization modules
work in parallel to compute histogram equalization for each tile. The last stage in the histogram
equalization module, scaling and mapping, needs the original input image data. This data is stored in
an input image buffer block. The bilinear interpolation block generates addresses to read the input
image pixel values from the memory. The input image pixel values from the image buffer block are
given to the histogram equalization modules for mapping. Mapped values obtained from histogram
equalization are scaled and used in the bilinear interpolation computation to reduce boundary
artifacts.

modelname = 'CLAHEExample';
open_system(modelname, 'force');

set param(modelname, 'SampleTimeColors"', 'off"');
set param(modelname, 'Open','on');
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set_param(modelname, 'SimulationCommand', 'Update');
set(allchild(@), 'Visible', 'off');
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The figure shows the top level view of the CLAHEExample model. The input image path is specified in
the inputImage block. The input image frame is converted to a pixel stream and pixelcontrol bus
using a Frame To Pixels block. The pixel stream is passed to the CLAHEHDLAIlgorithm subsystem for
contrast enhancement and is also stored in the imgBuffer subsystem. While processing, the
CLAHEHDLAlgorithm subsystem generates the address to read image data from the imgBuffer
subsystem. The pixel value read from the imgBuffer subsystem is passed to CLAHEHDLAlgorithm for
adjustment. The adjusted pixel values are given to the Pixels To Frame block and converted to a
frame using the control signals. The Result subsystem shows the input image and output image once
all the pixels in the frame have been received by the Pixels To Frame block.

Tile Generation

system = 'CLAHEExample/CLAHEHDLAlgorithm/tileGeneration';
open_system(system, 'force');
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The figure shows the tile generation subsystem. The input image is divided into 8 tiles in both
horizontal and vertical directions. Tiles are created by modifying the input pixelcontrol bus to
select the pixels in each tile region. The VerticalTileExtractor subsystem extracts tiles in the vertical
direction. The size of a vertical tile is computed by dividing the number of rows in the input image by
the number of tiles in the vertical direction (8 in this example). This vertical tile is given to the ROI
Selector block to generate 8 horizontal tiles and their corresponding pixelcontrol busses. The size
of the horizontal tiles is computed by dividing the number of columns by the number of tiles in the
horizontal direction (8 in this example). The pixel stream to the histogram equalization pipeline is
controlled by diverting each vertical tile to an alternate pipe. The tile size calculated in either must
be an even integer. If the input image does not divide into an integer number of even-sized tiles, pad
the input image symmetrically.

Histogram Equalization Pipeline
system = 'CLAHEExample/CLAHEHDLAlgorithm/histoEqPipeline/";

subsystem = [system 'histPipel'];
open_system(subsystem, 'force');
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Two histogram equalization pipelines are used to keep pace with the streaming input pixels. Each
histogram equalization pipeline consists of 8 histogram equalization modules corresponding to each
tile in the horizontal direction. These modules are implemented by using a For Each subsystem. Each
histogram equalization module is divided into five stages: histogram calculation, total excess
calculation, total excess distribution, excess redistribution, cumulative distribution function, and
mapping.

The first module of the histogram pipeline, histoExcess subsystem, performs histogram calculation
and total excess calculation for each tile. To compute the histogram, the Histogram block is used.
When the histogram is complete the block generates a readRdy signal. The subsystem then reads the
histogram values and determines excess value from each bin by using clip limit value. The clip limit is
computed from the normalized clip limit value specified using these equations.

minClipLimit = ceil{num PizInTile /numBins);
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clipLimit = minClipLimit + round(normClipLimit = (numPicInTile — minClip Limit) ),

The excess value from each bin is accumulated to form total excess value. The previously computed
histogram values are not changed during total excess calculation and are stored in a Simple Dual Port
RAM memory block. The necessary control signals for the RAM block (ramBus) are generated by the
histoExcess subsystem. The total excess value calculated in the histoExcess subsystem is used by the
Distribute subsystem.

The Distribute subsystem computes two variables: average bin increment and upper limit. These
values are computed from the total excess value by using these equations:

avgBinlner = total Exeess num Bins;
upper Limit = clipLimit - avgBinincr;

The Distribute subsystem then reads the value of each histogram bin from the RAM block. It updates
the value at every bin based on these three conditions:

If the histogram value of a bin is greater than the clip limit, it is replaced with the clip limit.

2 If the histogram value of a bin is between the clip limit and the upper limit, the histogram value
is replaced with the clip limit. The total excess value is reduced by the number of added pixels
equal to (clipLimit - histVal).

3 If the histogram value of a bin is less than the upper limit, the histogram value is increased by
the average bin increment. The total excess value is reduced by the average bin increment.

The adjusted histogram value is stored at the same address. The remaining total excess value is
passed to the Redistribute subsystem as excess value.

system = 'CLAHEExample/CLAHEHDLAlgorithm/histoEqPipeline/";
subsystem = [system 'histPipel/redistribute'];
open_system(subsystem, 'force');
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The Redistribute subsystem distributes spillover excess values to the histogram bins. It primarily uses
two variables to distribute excess values: binIncr and step. binIncr specifies the value to be added
to the histogram bins. step specifies the increment in the address counter used to fetch the
histogram bin value. If the excess is greater than or equal to the number of bins, then binIncr is
calculated by dividing the excess value by the number of bins, and step is set to 1. The divide is
implemented by using a right-shift operation, since the number of bins is a power of 2.

If the excess is less than the number of bins, binIncr is set to 1 and step is calculated by dividing the
number of bins by the excess value. The divide is computed by using a n-D Lookup Table (Simulink)
block. The redistributeCtrl MATLAB Function generates the address for the RAM block by using
the step value computed. When the address reaches the total number of bins, the step value is re-
computed using the most recent excess value. Care is taken to not repeat the first bin as the start bin
for redistribution. If the value of the histogram bin is less than the clip limit, it is increased by
binIncr, and the same value is subtracted from the excess value. If the value of histogram bin is
equal to the clip limit, no operation is performed and the value is written back to the same address.
The MATLAB Function block repeats these bin adjustments until the excess value reaches 0.

The last stage of the histogram equalization pipeline is CDF calculation. The CDF subsystem
computes the cumulative sum of the histogram bin values. The histogram values are read from the
RAM block and added to the sum of the previous histogram bin values. It is then stored to the same
address.
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The five stages of the histogram equalization module can be considered as five states. The five states
of histogram equalization module are sequential. Thus, a state counter is used to move from one state
to another state. A counter value determines the state of the histogram equalization module. A
Multiport Switch (Simulink) block is used with the state counter as the index value. The multi-port
switch connects the ramBus from each state with the correct memory according to the index. The
state counter is in state 1 in idle condition. When histoExcess finishes excess calculation it sets the
done signal to 1 for one cycle, and the state counter moves to state 2. Similarly, the distribute
subsystem, redistribute subsystem, and cdf subsystem generate done flags when their processing
completes. These done flags increment the state counter to state 5, where it uses input image pixel
values from the input image buffer block as addresses to read CDF values from the RAM. The address
counter that reads the input image values is driven by the bilinear interpolation subsystem. The state
counter is incremented by the bilinear interpolation subsystem when mapping for the respective
pipeline is complete.

Bilinear Interpolation

RS [ IS [ S—

Bilinear interpolation is used to smooth edges when the tiles are stitched together. The figure shows
how four tiles are used to compute pixel values in the output image. The each tile is divided into four
parts. One part from each of the four tiles are grouped together to compute bilinear interpolation for
that section of the image.

Interpolation uses this equation:

clahel (imgTileldx{l}, imgTileIdx{Z}) = ...
(rowBevW .* (colBRevW .* double(grayxform{imgPixVals, ulMapTile))} +

colW F odoukle (grayvxform(imgPixVals,urHMapTile) ) ) +
rowN % (colBevW .* double(grayxform(imgPixVals, blMapTile)) +
colW ¥ odouble (grayvxform (imgPixVals, brMapTile)))) ...
fnormFactor;
grayx form(imgPizVals, mapTile) = round(255 + mapTile(imgPizVals) /numPizInTile);

The bilinear interpolation equation uses the position of a pixel with respect to each tile and the
intensity information at that position to compute a pixel value in the output image. The intensity
information is obtained from the input image pixel values stored in the image buffer. For corner tiles,
intensity values are replicated (mirrored). The intensity information at the respective position in each
tile is extracted from the CDF function of the histogram equalization pipeline by using the input
image pixel value at the same position. The grayxform function scales the values obtained from the
CDF function. The result is then divided by the number of pixels in a tile, represented as normFactor
in the equation.

system = 'CLAHEExample/CLAHEHDLAlgorithm/bilinearInterpolation’;
open_system(system, 'force');
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The figure shows the HDL implementation of the bilinear interpolation subsystem. When the
histogram equalization pipeline reaches state 5, the paramCalc subsystem starts computing the read
address for the imgBuffer subsystem. The pixel value read from the buffered image is the address for
the RAM in the histogram equalization pipeline. CDF values are fetched from the read address for all
the tiles from both the histogram equalization pipelines simultaneously. The required CDF values are
selected and passed to the equation subsystem using Selector Switch blocks and Switch blocks. The
Switch block selects which pipeline contains upper/lower tiles and the Selector Switch blocks select
data corresponding to left/right tiles. The control signals for the Selector Switch and Switch blocks
are generated in the paramCalc subsystem by using a read counter. Thus, intensity values at a pixel
position for each tile are obtained from the image buffer. The bilinear interpolation equation also
requires the pixel position and the total number of pixels in the tile. These parameters are also
generated in the paramCalc subsystem. The equation subsystem is pipelined to optimize performance
in hardware. The result is returned as a pixel stream with a pixelcontrol bus.
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Bilinear interpolation of the output image is computed by traversing the rows from left to right. When
all histogram equalization modules in the first pipeline have reached state 5, the paramCalc
subsystem is enabled. The read addresses for the imgBuffer subsystem are computed until point A.
Further computation of bilinear interpolation requires values from the histogram equalization
modules of the second pipeline. When all histogram equalization modules in the second pipeline have
reached state 5, the read address counter is again enabled and the bilinear interpolation output
results are computed for pixel positions between point A and point B. Once the address counter
reaches point B, results from first pipeline are no longer required. The pipelDone signal is
generated to change the state of the first histogram equalization pipeline modules back to state 1.
Until this point, the tiles in the first pipeline are upper tiles and the tiles in the second pipeline are
lower tiles. For the computation of values between point B and point C, the tiles in the second
pipeline become the upper tiles and tiles in the first pipeline are now lower tiles. This operation
continues until only the lowest tiles in the image remain. The output for these tiles is computed by
replicating the values for the other pipeline. The output results are pushed into a FIFO in the
outputStage subsystem and popped out such that the output valid signal is similar to that of the input
pixel stream.

Model Parameters

Block Parameters: CLAHEHDLAlgerithm X

Normalized Clip Limit |0.01

Cancel Help Apply

CLAHE uses a clip limit to prevent over-saturation of the image in homogeneous areas. These areas
are characterized by a high peak in the histogram of an image tile due to many pixels falling in the
same intensity range. For the model presented here, the clip limit is a user-defined normalized value.
The default value is 0.01 (as shown in figure). The clip limit can be any value between 0 and 1
(inclusive).

Simulation and Results

This example uses an input image of size 240-by-320 pixels, whose path is specified in the inputImage
block. The input image pixels are specified by a single intensity component in uint8 data type. For 8
tiles in each direction, the computed tile size is 30-by-40 and the number of pixels in each tile is 1200.
The number of histogram bins is set to 256.
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This figure shows the input image and output image from the CLAHE model. The result shows the
improved contrast in the output image, without over- saturation. The result of the CLAHE HDL model
matches the adaphisteq function in MATLAB and has error of + 1 pixel.

HDL code can be generated for the CLAHEHDL subsystem. An HDL Coder™ license is required to
generate HDL code. This design was synthesized on the Intel® Arria® 10 GX platform, for
10AX115S2F4511SG FPGA device. The table shows the resource utilization. The HDL design achieves
a clock rate of over 120 MHz.

|[Model Name | CLAHEHDL ||
| Input Image Resolution 320 x 240
|ALM Utilization 48527

|Total RAM Blocks 62

|l

|l

|Total Registers | 52887
|l

| Total DSP Blocks | 38

0® 0% o° o° o° o° od° o o°

References
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Image Resize

This example shows how to downsample an image by using the bilinear, bicubic, or Lanczos-2
interpolation algorithm. The implementation uses an architecture suitable for FPGAs.

In theory, you can achieve exact image reconstruction by resizing the image using a sinc kernel.
However, sinc kernels have infinite spatial extent. To limit the extent, interpolation implementations
use simpler kernels to approximate a sinc. The bilinear interpolation algorithm uses the weighted
sum of the nearest four pixels to determine the values of the output pixels. Bicubic and Lanczos-2
interpolations are approximations of a sinc kernel. Bicubic interpolation is a more computationally
efficient version of the Lanczos-2 method.

Behavioral Reference

By default, the Image Processing Toolbox™ function imresize uses the bicubic interpolation
algorithm. You can choose bilinear or Lanczos-2 interpolation algorithms by setting the 'Method'
name-value pair argument to 'bilinear' or 'lanczos-2"', respectively.

v = VideoReader('rhinos.avi');

I = readFrame(v);

Y = imresize(I,[160,256], 'Method', 'bilinear');
figure;

imshow(Y);

Interpolation Algorithms
Bilinear interpolation determines the inserted pixel value from the weighted average of the four input

pixels nearest to the inserted location. /i and v are horizontal scale and vertical scale, respectively,
and are calculated independently.
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The value for each output pixel is given by (Funf + Prall — fi) o + (Pah + Pu(l = k)1 — v),

The bicubic algorithm calculates the average of the 16 input pixels nearest to the inserted location.
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The bicubic coefficients are given by 0 2 < |d|

These equations show that the bilinear and bicubic algorithms calculate coefficients for each output
pixel.

The Lanczos-2 algorithm precalculates the coefficients based on the resize factor. The model calls the
lanczos2 coeffi.m script to calculate and store these coefficients. The script calculates the
Lanczos-2 coefficients using 6 taps and 32 phases.

Implementation of Interpolation Algorithms for HDL

This figure shows the principle used to implement the image resize algorithm for hardware. For
example, consider downsampling an image by a scale factor of 3/4. One possible implementation of
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downsampling an image by 3/4 is to upsample by a factor of 3 and then downsample by a factor of 4.
The figure shows the pixel indexes after these operations. Blue dots represent the original pixels, and
green crosses represent the interpolated pixels after upsampling.

1) 2) 3) (a) (s (6 (7

Input pixel 1 2 3 1 5 & 7
Upsample by 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Downsample by 4 1 ] 9 13 17 21

Valid output pixel 1 2 3 5 6 7

Phase 0 1 2 - 0 1 2
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The indexes after downsampling show that not all the interpolated pixels are used in the output
image. This example implements a more efficient version of the downsample step by generating
interpolated pixels only when they are needed in the output image.

The phase, shown in the bottom line of the figure, is an index that selects which pixels are needed for
the output image. When the phase is 0, the algorithm returns the original input pixel value. When the
phase is 1, the algorithm calculates coefficients to generate the interpolated pixel in the first position.
When the phase is 2, the algorithm calculates coefficients to generate the interpolated pixel in the
second position.

Example Model

Similar to the imresize function, the imresize(downsample) subsystem in this model supports two
ways to define the output image size. You can specify a scale factor ranging from 1.000 to 127.999, or
you can define the output frame width and height in pixels. Double-click the imresize(downsample)
subsystem to set its parameters.

To avoid aliasing introduced by lowering the sampling rate, the model includes a lowpass filter before
the imresize(downsample) subsystem. After the imresize(downsample) subsystem, the Pixel Stream
FIFO block consolidates the output pixels into contiguous lines of valid pixels surrounded by blanking
intervals of invalid pixels. This FIFO is optional. Use the FIFO when you want to take advantage of
the increased blanking interval to perform further computations on the pixel stream. The Measure
Timing block displays the size of the output frames.

modelname = 'ImageResizeForFPGAHDL';
open_system(modelname) ;

set param(modelname, 'SampleTimeColors','on');
set param(modelname, 'Open','on');
set(allchild(0), 'Visible', 'off"');
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In the imresize(downsample) subsystem, the input conversion and output conversion subsystems
convert the colorspace of the pixel stream based on the parameter on the mask. The

valid_gen horizontal and valid gen vertical subsystems return control signals that are used for
generating coefficients and rebuilding the output control bus. If the last line of the image contains no
valid pixels after downsampling, the ctrlBusRebuild subsystem rebuilds the control bus for the new

size.

open_system([modelname '/imresize(downsample)'], 'force');

. -

2]

19 clock cycles

Se— = 1]
Il -
‘ D_L.
] INGEais
] A
o 2 = R e S Sl el o T —
L 7 = = = ]

This diagram shows the expected output from the valid gen horizontal and valid gen vertical
subsystems. The valid signal indicates the validity of the current address and the corresponding
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phase. To simplify rebuilding the control bus, the first line and row of each output frame are always
valid.

addr 1 2 3 4 5 6 7 8 9
valid
phase 0 1 p 0 1 p 0

The coefficient generation subsystem, coeffi gen, is a variant subsystem, where bilinear, bicubic, and

Lanczos-2 coefficient generators are implemented separately. You can select the algorithm from the
mask.

open_system([modelname '/imresize(downsample)/coeffi gen'], 'force');

C» b L @D
xScale h hioef
»
yScale h vCoeff
) xScale hCo=ff
) vScals vCioaff

lanczos2

The resize process element subsystems multiply the coefficients with each pixel component by using
a separable filter in vertical order and then in horizontal order. The trim 0 1 subsystem ensures the
result is between 0 and 1.

open_system([modelname '/imresize(downsample)/resize process element H'], 'force');
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Resource Usage

These tables show the resource usage for the imresize(downsample) subsystem with 240p video
input, and do not include the lowpass filter or the Pixel Stream FIFO. The design was synthesized to
achieve a clock frequency of 150 MHz.

This table shows the resources for each of the three algorithms when downsampled in the HSV

colorspace.
~

N 1 Slice LUTs  Slice Registers F7 Muxes Slice LUT as Logic  LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

ame (218600) (437200) (109300} (54650) (218600) (T0400) (218600) (545) (900)
v Subsystem 11436 27342 57 6849 9505 1931 6739 16.5 106
> u_Bicubic (Bicubic_| 3T 8930 o 2289 3068 649 2200 5.5 36
b u_Bilinear (Bilinear 2380 4933 0 1294 1930 450 1448 25 26
> u_lanczos_2 (Lanc 5339 13443 57 3373 4507 832 2955 85 44

This table shows the resources for each of the three algorithms when downsampled in the RGB

colorspace.
A
N Slice LUTs Slice Registers F7 Muxes Slice LUT as Logic  LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs
ame (218600} (437200) (109300} (54650) (218600) (70400) (218600} (545) (900)
hd Subsystem 9528 24002 24 5945 7949 1679 5666 135 a8
> u_Bicubic (Bicubic_ 394 7824 0 2007 2630 564 1832 45 30
> u_Bilinear (Eil 1729 3965 0 1059 1358 a7 1138 1.5 20
> u_Lanczos_2 (Lanczos_2) 4705 12177 24 2913 3961 744 2648 7.5 38
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Fog Rectification

Fog Rectification

Fogegy
input
image

Fog
Rectified
Output
image

This example shows how to remove fog from images captured under foggy conditions. The algorithm
is suitable for FPGAs.

Fog rectification is an important preprocessing step for applications in autonomous driving and object
recognition. Images captured in foggy and hazy conditions have low visibility and poor contrast.
These conditions can lead to poor performance of vision algorithms performed on foggy images. Fog
rectification improves the quality of the input images to such algorithms.

This example shows a streaming fixed-point implementation of the fog rectification algorithm that is
suitable for deployment to hardware.

To improve the foggy input image, the algorithm performs fog removal and then contrast
enhancement. The diagram shows the steps of both these operations.

This example takes a foggy RGB image as input. To perform fog removal, the algorithm estimates the
dark channel of the image, calculates the airlight map based on the dark channel, and refines the
airlight map by using filters. The restoration stage creates a defogged image by subtracting the
refined airlight map from the input image.

Then, the Contrast Enhancement stage assesses the range of intensity values in the image and uses
contrast stretching to expand the range of values and make features stand out more clearly.

Fog Removal
R T N
| ] . - i I
! | DarkChannel « o Airlightmap 1+ | Air light map :_.J : |
| estimation Lo estimation b5y refinement ] i Restoralion !
i ' ' \ | )
Defogged

: image
Contrast Enhancement
[ Py e s | TSRSTESSRTRTE i R !
& o Lo ] Lo :
{1 Contrast [ CDF L._: Histogram IH—: Histogram | | RGBtoGray | |«
1+ Stretching |~ 1 Calculation i | Normalization |* | Calculation |* ! Conversion |
[ ! [l H 1 | | | | |
| Essgesgsammamink Lonsonesezmrmny i B h S ; e }

Fog Removal
There are four steps in performing fog removal.

1. Dark Channel Estimation: The pixels that represent the non-sky region of an image have low
intensities in at least one color component. The channel formed by these low intensities is called the
dark channel. In a normalized, fog-free image, the intensity of dark channel pixels is very low, nearly
zero. In a foggy image, the intensity of dark channel pixels is high, because they are corrupted by fog.
So, the fog removal algorithm uses the dark channel pixel intensities to estimate the amount of fog.
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The algorithm estimates the dark channel Liarx (%) by finding the pixel-wise minimum across all
three components of the input image " (' #) where © € [ 4. 0],

2. Airlight Map Calculation: The whiteness effect in an image is known as airlight. The algorithm
calculates the airlight map from the dark channel estimate by multiplying by a haze factor, =, that

represents the amount of haze to be removed. The value of = is between 0 and 1. A higher value
means more haze will be removed from the image.

Lirlz, ) =2z x min I . (x ¥)
e e [rgb

3. Airlight Map Refinement: The algorithm smoothes the airlight image from the previous stage by
using a Bilateral Filter block. This smoothing strengthens the details of the image. The refined image

is referred to as frefined (75 ),
4. Restoration: To reduce over-smoothing effects, this stage corrects the filtered image using these

equations. The constant, 1, represents the mid-line of changing the dark regions of the airlight map
from dark to bright values. The example uses an empirically derived value of i = (.6,

Fecduced(, 1) = m % min(Lae (2, ), Tre pinea( 2, 1))

The algorithm then subtracts the airlight map from the input foggy image and multiplies by the factor
255

I.l-'-:l-:-.l‘ J-'| |I'-|'|1|I |.l'|:"r‘ 'Iil,:l .

I“{z,4) — Leduced(T,U)

In"l slaare ["Il ) .'!Ir} E'r]'.-r K -
255 — Lregueed( T, )

Contrast Enhancement

There are five steps in contrast enhancement.

1. RGB to Gray Conversion: This stage converts the defogged RGB image, I cstore () from the
fog removal algorithm into a grayscale image, lyray(®, ),

2. Histogram Calculation: This stage uses the Histogram block to count the number of pixels falling
in each intensity level from 0 to 255.

3. Histogram Normalization: The algorithm normalizes the histogram values by dividing them by
the input image size.

4. CDF Calculation: This stage computes the cumulative distribution function (CDF) of the
normalized histogram bin values by adding them to the sum of the previous histogram bin values.

5. Contrast Stretching: Contrast stretching is an image enhancement technique that improves the
contrast of an image by stretching the range of intensity values to fill the entire dynamic range. When
dynamic range is increased, details in the image are more clearly visible.

5a. il and i2 calculation: This step compares the CDF values with two threshold levels. In this
example, the thresholds are 0.05 and 0.95. This calculation determines which pixel intensity values
align with the CDF thresholds. These values determine the intensity range for the stretching
operation.



Fog Rectification

5b. T calculation: This step calculates the stretched pixel intensity values to meet the desired output
intensity values, 1 and @2,

01 is 10% of maximum output intensity floor(10*255/100) for uint8 input.
o2 is 90% of maximum output intensity floor(90*255/100) for uint8 input.

T is a 256-element vector divided into segments #1, t2, and f1. The segment elements are computed
from the relationship between the input intensity range and the desired output intensity range.
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i1 and ‘2 represent two pixel intensities in the input image's range and @1 and @ represent two pixel
intensities in the rectified output image's range.

These equations show the how the elements in T are calculated.
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5c. Replace intensity values: This step converts the pixel intensities of the defogged image to the
stretched intensity values. Each pixel value in the defogged image is replaced with the corresponding
intensity in T.

HDL Implementation

The example model implements the algorithm using a steaming pixel format and fixed-point blocks
from Vision HDL Toolbox. The serial interface mimics a real time system and is efficient for hardware
designs because less memory is required to store pixel data for computation. The serial interface also
allows the design to operate independently of image size and format and makes it more resilient to
timing errors. Fixed-point data types use fewer resources and give better performance on FPGA. The
necessary variables for the example are initialized in the InitFcn callback.
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The Foglmage block imports the input image to the model. The Frame To Pixels block converts the
input frames to a pixel stream of uint8 values and a pixelcontrol bus. The Pixels To Frame block
converts the pixel stream back to image frames. The hdlInputViewer subsystem and hdlOutputViewer
subsystem show the foggy input image and the defogged enhanced output image, respectively. The
ImageBuffer subsystem stores the defogged image so the Contrast Enhancement stages can read it as
needed.

The FogRectification subsystem includes the fog removal and contrast enhancement algorithms,
implemented with fixed-point datatypes.
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Restoration

In the FogRemoval subsystem, a Minimum block named DarkChannel calculates the dark channel
intensity by finding the minimum across all three components. Then a Bilateral Filter block refines
the dark channel results. The filter block has the spatial standard deviation set to 2 and the intensity
standard deviation set to 0.5. These parameters are used to derive the filter coefficients. The bit
width of the output from filter stage is the same as that of the input.

Next, the airlight image is calculated by multiplying the refined dark channel with a haze factor, 0.9.
Multiplying by this factor after the bilateral filter avoids precision loss that would occur from
truncating to the maximum 16-bit input size of the bilateral filter.

The Restoration subsystem removes the airlight from the image and then scales the image to prevent
over-smoothing. The Pixel Stream Aligner block aligns the input pixel stream with the airlight image
before subtraction. The scale factor, m, is found from the midpoint of the difference between the
original image and the image with airlight removed. The Restoration subsystem returns a defogged
image that has low contrast. So, contrast enhancement must be performed on this image to increase
the visibility.
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The output from the FogRemoval subsystem is stored in the Image Buffer. The ContrastEnhancement
subsystem asserts a pop signal to read the frame back from the buffer.

Histogram Calculation and Normalization
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The ContrastEnhancement subsystem uses the Color Space Converter block to convert the RGB
defogged image to a grayscale image. Then the Histogram block computes the histogram of pixel
intensity values. When the histogram is complete, the block generates a readRdy signal. Then the
HistNormAndCDFCalculation subsystem normalizes the histogram values and computes the CDE.

The i1Andi2Calculation subsystem computes the i1 and iz values that describe the input intensity
range. Then the TCalculation subsystem returns the list of target output intensity values. These 256
values are written into a lookup table. The logic in the Contrast Stretching-LUT area generates a pop
signal to read the pixel intensities of the defogged image from the Image Buffer, and feeds these
values as read addresses to the LUT. The LUT returns the corresponding stretched intensity values
defined in T to replace the pixel values in the defogged image.
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1) Add Subsystern or Model blocks as wvalid variant choices.
2} You cannot connect blocks at this level. At simulation, connectivity is automatically
determined, based on the active variant and port name matching.
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1) Behavioral Memory and VideoF rameBuffier are the two variant choices.

2} Behavioral Memory is designed using HOL FIFO blocks.

3} VideoFrameBuffer block is used from xilinxzyngbasedvision supportPlg.

4} Currently VideoFrameBuffer block is used only for Simulation.

5} For FPGA-in-the-Loop Simulations, make sure Behavioral Memory is enabled.

The Image Buffer subsystem contains two options for modeling the connection to external memory. It
is a variant subsystem where you can select between the BehavioralMemory subsystem and the
“Model Frame Buffer Interface” (Computer Vision Toolbox Support Package for Xilinx Zyng-Based
Hardware) block.
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Use the BehavioralMemory subsystem if you do not have the support package mentioned below. This
block contains HDL FIFO blocks. The BehavioralMemory returns the stored frame when it receives a
pop request signal. The pop request to BehavioralMemory must be high for every row of the frame.

2-158



Fog Rectification

The Video Frame Buffer block requires the Computer Vision Toolbox Support Package for Xilinx Zyng-
Based Hardware™ . With the proper reference design, the support package can map this block to an
AXI-Stream VDMA buffer on the board. This frame buffer returns the stored frame when it receives
the popVB request signal. The pop request to this block must be high only one cycle per frame.

The inputs to the Image Buffer subsystem are the pixel stream and control bus generated after fog
removal. The pixel stream is fetched during the Contrast Enhancement operation, after the stretched
intensities (T) are calculated.

Simulation and Results

This example uses an RGB 240-by-320 pixel input image. Both the input pixels and the enhanced
output pixels use the uint8 data type. This design does not have multipixel support.

The figure shows the input and the enhanced output images obtained from the FogRectification

subsystem.
(4] hdIFaginput 2 O * [#] hdiFogOutput o O >
File Tools View Simulation Help ¥ | File Tools View Simulation Help k]
||0|9.QQ|;E]-;132% I B OB | & & |
QPr@ = ©Pr® =@

Ready 5RGE:2401320 ET:ZBM‘JE.I}DEI Ready |RGB:z40x320 [T-260496.000

You can generate HDL code for the FogRectification subsystem. An HDL Coder™ license is required
to generate HDL code. This design was synthesized for the Intel® Arria® 10 GX (115S2F4511SG)
FPGA. The table shows the resource utilization. The HDL design achieves a clock rate of over 200

MHz.

% |Model Name | FogRectificationHDL ||
% |Input Image Resolution || 320 x 240 ||
% |ALM Utilization [ 11070 N
% |Total Registers | 20878 ||
% |Total RAM Blocks | 71 ||
% |Total DSP Blocks | 39 ||
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Blob Analysis

2-160

This example shows how to implement a single-pass 8-way connected- component labeling algorithm
and perform blob analysis.

Blob analysis is a computer vision framework for detection and analysis of connected pixels called
blobs. This algorithm can be challenging to implement in a streaming design because it usually
involves two or more passes through the image. A first pass performs initial labeling, and additional
passes connect any blobs not labeled correctly on the first pass. Streaming designs use a single-pass
algorithm to apply and merge labels in hardware and store blob statistics in a RAM. This example has
an output stage in software that reads the RAM results and overlays them onto the input video. This
example labels blobs, and assigns each blob a unique identifier. Each blob is drawn in a different
color in the output image. The example also computes the centroid, bounding box, and area of up to
1024 labeled blobs. The model can support up to 1080p@60 video.

Overview

The example model supports hardware-software co-design. The BlobDetector subsystem is the
hardware part of the design, and supports HDL code generation. In a single pass, this subsystem
labels each pixel in the incoming pixel stream, merges connected areas, and computes the centroid,
area, and bounding box for each blob. The output of the subsystem is a stream of labeled pixels. The
subsystem stores the blob statistics in a RAM. When the blob analysis is complete, the subsystem
asserts the data_ready output port to indicate that the blob statistics are ready to be read.

Logic external to the subsystem reads the statistics one at a time from the BlobDetector RAM by
using the blobIndex input port as an address. This external logic represents the software part of the
design, and does not support HDL code generation. This part of the design reads the centroid, area,
and bounding box of each blob, compiles them into vectors for use by the Overlay subsystem, and
displays the blob statistics.

The BlobDetector subsystem provides these configuration ports that can be mapped to AXI registers
for real-time software control.

* GradThresh: Threshold used to create the intensity image.

* AreaThresh: Number of pixels that define a blob. The default setting of 1 means that all blobs are
processed.

* CloseOp: Whether morphological closing is performed prior to labeling and analysis. Closing can
be useful after thresholding to fill any introduced holes. By default, this signal is high and enables
closing. If you disable closing, the darker coin is detected as two blobs rather than a single
connected component.

* VideoMode: Pixel stream returned by the subsystem. You can select the input video (0), labeled
pixels (1), or intensity video after thresholding (2). You can use these different video views for
debugging.

The BlobDetector subsystem returns the output video with associated control signals, and the
bounding box, area, and centroid for each requested blobIndex. The subsystem also has these output
signals to help with debugging.

* index_o: Index of the blob currently returning statistics.

* num_o: Number of blobs that meet the area threshold.

* totalNum_o: Total number of blobs detected in the current frame. By comparing num_o and
totalNum_o, you can fine-tune the input area threshold.
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+ data_ready_o: Indicates when the blob statistics for the current frame are ready to be read from
the RAM. In a hardware-software co-design implementation, you can map this signal to an AXI
register, and the software can poll the register value to determine when to start reading the
statistics.

Blob Detector

The BlobDetector subsystem performs connected component labeling and analysis in a single pass

over the frame. At the top level, the subsystem contains the CCA Algorithm subsystem and a cache
for the results. The CCA Algorithm subsystem performs labeling, the calculation of blob statistics,

and blob merging.
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Labeling Algorithm

The labelandmerge MATLAB Function block performs 8-way pixel labeling relative to the current
pixel. The possible labels are: previous label, top label, top-left label, and top-right label. The function
assigns the current pixel an existing label in order of precedence. If no labels exist, and the pixel is a
foreground pixel, then the function assigns a new label to the current pixel by incrementing the label
counter. The function forms a labeling window as shown in the diagram by streaming in the current
pixel, storing the previous label in a register, and storing the previous line of pixel labels in a RAM.
The labels identified by labelandmerge are streamed out of the block as they are identified. For
details of the merge operation, see the Merge Logic section.

top-left top top-right
label label label
previous current
label pixel
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Blob Statistics Calculation

The cca subsystem computes the bounding box, area, and centroid of each blob. This operation uses a
set of accumulators and RAMs.

The area_accum subsystem increments the area of the blob represented by each detected label by
incrementing a RAM address corresponding to the label.

The x_accum and y_accum subsystems accumulate the xpos and ypos values from the input ports.
The xpos and ypos values are the coordinates of the pixel in the input frame. Using the area values,
and the accumulated coordinates, the centroid is calculated from xaccum/area and yaccum/area.
This calculation uses a single-precision reciprocal for 1/area and then multiplies that reciprocal by
xaccum and yaccum to find the centroid coordinates. Using a native floating-point reciprocal enables
high precision and maintains high dynamic range. When you generate HDL code, the coder
implements the reciprocal using fixed-point logic rather than requiring floating-point resources on
the FPGA. For more information, see “Getting Started with HDL Coder Native Floating-Point
Support” (HDL Coder).

The bbox_store subsystem calculates the bounding box. The subsystem calculates the top-left
coordinates, width, and height of the box by comparing the coordinates for each label against the
previously cached coordinates.

Merge Logic

During the labeling step, each pixel is examined using only the current line and previous line of label
values. This narrow focus means that labels can need correction after further parts of the blob are
identified. Label correction can be a challenge for both frame-based and pixel-streaming
implementations. The diagrams show two examples of when initial labeling requires correction.

The diagram on the left shows the current pixel connecting two regions through the previous label
and top-right label. The diagram on the right shows the current pixel connecting two regions through
the previous label and top label. The current pixel is the first location at which the algorithm detects
that a merge is required. When the algorithm detects a merge, that pixel is flagged for correction. In
both diagrams, the pixels are all part of the same blob and so each pixel must be assigned the same
label, 1.

2 | 2 | pix

1 | pix

The labelandmerge MATLAB Function block checks for merges and returns a uint32 value that
contains the two merged labels. The MergeQueue subsystem stores any merges that occur on the
current line. At the end of each line, the cca subsystem reads the MergeQueue values and corrects
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the area, centroid, and bounding box values in the accumulators. The accumulated values for the two
merged labels are added together and assigned to a single label. The input to each accumulator
subsystem has a 2:1 multiplexer that enables the accumulator to be incremented either when a new
label is found, or when a merge occurs.

Output Display

At the end of each frame, the model updates two video displays. The Results On Image video display
shows the input image with the bounding boxes (green rectangles) and centroids (red crosses)
overlaid. The Label Image video display shows the results of the labeling stage before merging. In the
Label Image display, the top of each coin has a different label than the rest of the coin. The merge
stage corrects this behavior by merging the two labels into one. The bounding box returned for each
blob shows that each coin was detected as a single label.

Implementation Results

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product. To generate the HDL code, use this command.

makehdl( 'BlobAnalysisHDL/BlobDetector")
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The generated code was synthesized for a target of Xilinx ZC706 SoC. The design met a 200 MHz
timing constraint. The design uses very few hardware resources, as shown in the table.

T —
5x2 table

Resource Usage
DSP48 7 (0.78%)
Register 4827 (1.1%)
LUT 3800 (1.74%)
Slice 1507 (2.67%)
BRAM 25.5 (4.68%)

See Also

More About

. “Hardware-Software Co-Design Workflow for SoC Platforms” (HDL Coder)
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Pixel-Streaming Design in MATLAB
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This example shows how to design pixel-stream video processing algorithms using Vision HDL
Toolbox™ objects in the MATLAB® environment and generate HDL code from the design.

This example also tests the design using a small thumbnail image to reduce simulation time. To
simulate larger images, such as 1080p video format, use MATLAB Coder™ to accelerate the
simulation. See “Accelerate a Pixel-Streaming Design Using MATLAB Coder”.

Test Bench

In the test bench PixelStreamingDesignHDLTestBench.m, the videoln object reads each frame
from a video source, and the scaler object reduces this frame from 240p to a thumbnail size for the
sake of simulation speed. This thumbnail image is passed to the frm2pix object, which converts the
full image frame to a stream of pixels and control structures. The function
PixelStreamingDesignHDLDesign.m is then called to process one pixel (and its associated control
structure) at a time. After we process the entire pixel-stream and collect the output stream, the
pix2frm object converts the output stream to full-frame video. The viewer object displays the output
and original images side-by-side.

The workflow above is implemented in the following lines of
PixelStreamingDesignHDLTestBench.m.

for f = 1l:numFrm
frmFull = step(videoln);
frmIn = step(scaler,frmFull);

Get a new frame
Reduce the frame size

o° o°

[pixInVec,ctrlInVec] = step(frm2pix, frmIn);
for p = l:numPixPerFrm
[pix0OutVec(p),ctrlOutVec(p)] = PixelStreamingDesignHDLDesign(pixInVec(p),ctrlInVec(|
end
frmOut = step(pix2frm,pixOutVec,ctrlOutVec);

step(viewer, [frmIn frmOut]);
end

Both frm2pix and pix2frm are used to convert between full-frame and pixel-stream domains. The
inner for-loop performs pixel-stream processing. The rest of the test bench performs full-frame
processing (i.e., videoln, scaler, and viewer).

Before the test bench terminates, frame rate is displayed to illustrate the simulation speed.
Pixel-Stream Design

The function defined in PixelStreamingDesignHDLDesign.m accepts a pixel stream and five
control signals, and returns a modified pixel stream and control signals. For more information on the
streaming pixel protocol used by System objects from the Vision HDL Toolbox, see “Streaming Pixel
Interface” on page 1-2.

In this example, the function contains the Gamma Corrector System object.

The focus of this example is the workflow, not the algorithm design itself. Therefore, the design code
is quite simple. Once you are familiar with the workflow, it is straightforward to implement advanced
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video algorithms by taking advantage of the functionality provided by the System objects from Vision
HDL Toolbox.

Simulate the Design

Simulate the design with the test bench prior to HDL code generation to make sure there are no
runtime errors.

PixelStreamingDesignHDLTestBench;

10 frames have been processed in 31.28 seconds.
Average frame rate is 0.32 frames/second.

Deployable Video Plaver

_-—---

The viewer displays the original video on the left, and the output on the right. One can clearly see
that the gamma operation results in a brighter image.

Enter the following command to create a new HDL Coder™ project,
coder -hdlcoder -new PixelStreamingDesignProject

Then, add the file PixelStreamingDesignHDLDesign.m to the project as the MATLAB Function
and PixelStreamingDesignHDLTestBench.m as the MATLAB Test Bench.

Refer to “Getting Started with MATLAB to HDL Workflow” (HDL Coder) for a tutorial on creating and
populating MATLAB HDL Coder projects.

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation' step. Choose
the option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the links in the log window.
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Enhanced Edge Detection from Noisy Color Video
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This example shows how to develop a complex pixel-stream video processing algorithm, accelerate its
simulation using MATLAB Coder™, and generate HDL code from the design. The algorithm enhances
the edge detection from noisy color video.

You must have a MATLAB Coder license to run this example.

This example builds on the “Pixel-Streaming Design in MATLAB” on page 2-166 and the “Accelerate a
Pixel-Streaming Design Using MATLAB Coder” examples.

Test Bench

In the EnhancedEdgeDetectionHDLTestBench.m file, the videoIn object reads each frame from a
color video source, and the imnoise function adds salt and pepper noise. This noisy color image is
passed to the frm2pix object, which converts the full image frame to a stream of pixels and control
structures. The function EnhancedEdgeDetectionHDLDesign.m is then called to process one pixel
(and its associated control structure) at a time. After we process the entire pixel-stream and collect
the output stream, the pix2frm object converts the output stream to full-frame video. A full-frame
reference design EnhancedEdgeDetectionHDLReference.m is also called to process the noisy
color image. Its output is compared with that of the pixel-stream design. The function
EnhancedEdgeDetectionHDLViewer.mis called to display video outputs.

The workflow above is implemented in the following lines of
EnhancedEdgeDetectionHDLTestBench.m.

frmIn zeros(actLine,actPixPerLine, 3, 'uint8');
for f 1:numFrm

frmFull = step(videoln);

frmIn = imnoise(frmFull, 'salt & pepper');

% Get a new frame
% Add noise

% Call the pixel-stream design

[pixInVec,ctrlInVec] = step(frm2pix, frmIn);

for p = 1l:numPixPerFrm

[pixOutVec(p),ctrlOutVec(p)] = EnhancedEdgeDetectionHDLDesign(pixInVec(p,:),ctrlInVec(p

end
frmOut = step(pix2frm,pixOutVec, ctrlOutVec);

% Call the full-frame reference design
[frmGray, frmDenoise, frmEdge, frmRef] = visionhdlenhancededge reference(frmIn);

% Compare the results

if nnz(imabsdiff(frmRef, frmOut))>20
fprintf('frame %d: reference and design output differ in more than 20 pixels.\n',f)
return;

end

% Display the results

EnhancedEdgeDetectionHDLViewer (actPixPerLine,actLine, [frmGray frmDenoise uint8(255*[frmEdge

end

Since frmGray and frmDenoise are uint8 data type while frmEdge and frmOut are logical,
uint8(255x[frmEdge frmOut]) maps logical false and true to uint8(0) and uint8(255), respectively,
so that matrices can be concatenated.
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Both frm2pix and pix2frm are used to convert between full-frame and pixel-stream domains. The
inner for-loop performs pixel-stream processing. The rest of the test bench performs full-frame
processing.

Before the test bench terminates, frame rate is displayed to illustrate the simulation speed.

For the functions that do not support C code generation, such as tic, toc, imnoise, and fprintf in
this example, use coder.extrinsic to declare them as extrinsic functions. Extrinsic functions are
excluded from MEX generation. The simulation executes them in the regular interpreted mode. Since
imnoise is not included in the C code generation process, the compiler cannot infer the data type
and size of frmIn. To fill in this missing piece, we add the statement frmIn =
zeros(actLine,actPixPerLine,3,'uint8') before the outer for-loop.

Pixel-Stream Design

The function defined in EnhancedEdgeDetectionHDLDesign.m accepts a pixel stream and a
structure consisting of five control signals, and returns a modified pixel stream and control structure.
For more information on the streaming pixel protocol used by System objects from the Vision HDL
Toolbox, see the “Streaming Pixel Interface” on page 1-2.

In this example, the rgh2gray object converts a color image to grayscale, medfil removes the salt
and pepper noise. sobel highlights the edge. Finally, the mclose object performs morphological
closing to enhance the edge output. The code is shown below.

Convert RGB to grayscale
Remove noise
Detect edges
Apply closing

[pixGray,ctrlGray] = step(rgb2gray,pixIn,ctrlIn);
[pixDenoise,ctrlDenoise] = step(medfil,pixGray,ctrlGray);
[pixEdge,ctrlEdge] = step(sobel,pixDenoise,ctrlDenoise);
[pixClose,ctrlClose] = step(mclose,pixEdge,ctrlEdge);

o® o o o°

Full-Frame Reference Design

When designing a complex pixel-stream video processing algorithm, it is a good practice to develop a
parallel reference design using functions from the Image Processing Toolbox™ . These functions
process full image frames. Such a reference design helps verify the implementation of the pixel-
stream design by comparing the output image from the full-frame reference design to the output of
the pixel-stream design.

The function EnhancedEdgeDetectionHDLReference.m contains a similar set of four functions as
in the EnhancedEdgeDetectionHDLDesign.m. The key difference is that the functions from Image
Processing Toolbox process full-frame data.

Due to the implementation difference between edge function and visionhdl.EdgeDetector
System object, reference and design output are considered matching if frmOut and frmRef differ in
no greater than 20 pixels.

Create MEX File and Simulate the Design
Generate and execute the MEX file.

codegen( 'EnhancedEdgeDetectionHDLTestBench');
EnhancedEdgeDetectionHDLTestBench mex;

frame 1: reference and design output differ in more than 20 pixels.
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Deployable Vid
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Deployable Video Player

i i

The upper video player displays the original color video on the left, and its noisy version after adding
salt and pepper noise on the right. The lower video player, from left to right, represents: the
grayscale image after color space conversion, the de-noised version after median filter, the edge
output after edge detection, and the enhanced edge output after morphological closing operation.

Note that in the lower video chain, only the enhanced edge output (right-most video) is generated
from pixel-stream design. The other three are the intermediate videos from the full-frame reference
design. To display all of the four videos from the pixel-stream design, you would have written the
design file to output four sets of pixels and control signals, and instantiated three more
visionhdl.PixelsToFrame objects to convert the three intermediate pixel streams back to frames.
For the sake of simulation speed and the clarity of the code, this example does not implement the
intermediate pixel-stream displays.

HDL Code Generation
To create a new project, enter the following command in the temporary folder
coder -hdlcoder -new EnhancedEdgeDetectionProject

Then, add the file 'EnhancedEdgeDetectionHDLDesign.m' to the project as the MATLAB Function and
'EnhancedEdgeDetectionHDLTestBench.m' as the MATLAB Test Bench.

Refer to “Getting Started with MATLAB to HDL Workflow” (HDL Coder) for a tutorial on creating and
populating MATLAB HDL Coder projects.

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation' step. Choose
the option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the links in the log window.
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Accelerate a MATLAB Design With MATLAB Coder

3-2

Vision HDL Toolbox designs in MATLAB must call one or more System objects for every pixel. This
serial processing is efficient in hardware, but is slow in simulation. One way to accelerate simulations
of these objects is to simulate using generated C code rather than the MATLAB interpreted language.

Code generation accelerates simulation by locking down the sizes and data types of variables inside
the function. This process removes the overhead of the interpreted language checking for size and
data type in every line of code. You can compile a video processing algorithm and test bench into
MEX functions, and use the resulting MEX file to speed up the simulation.

To generate C code, you must have a MATLAB Coder™ license.

See “Accelerate a Pixel-Streaming Design Using MATLAB Coder”.
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HDL Code Generation from Vision HDL Toolbox

In this section...
“What Is HDL Code Generation?” on page 3-3
“HDL Code Generation Support in Vision HDL Toolbox” on page 3-3

“Streaming Pixel Interface in HDL' on page 3-3

What Is HDL Code Generation?

You can use MATLAB and Simulink for rapid prototyping of hardware designs. Vision HDL Toolbox
blocks and System objects, when used with HDL Coder™, provide support for HDL code generation.
HDL Coder tools generate target-independent synthesizable Verilog® and VHDL® code for FPGA
programming or ASIC prototyping and design.

HDL Code Generation Support in Vision HDL Toolbox
Most blocks and objects in Vision HDL Toolbox support HDL code generation.

The following blocks and objects are for simulation only and are not supported for HDL code
generation :

e Frame To Pixels (visionhdl.FrameToPixels)

* DPixels To Frame (visionhdl.PixelsToFrame)

o FIL Frame To Pixels (visionhdl.FILFrameToPixels)

* FIL Pixels To Frame (visionhdl.FILPixelsToFrame)

* Measure Timing (visionhdl.MeasureTiming)

Streaming Pixel Interface in HDL

The streaming pixel bus and structure data type used by Vision HDL Toolbox blocks and System
objects is flattened into separate signals in HDL.

In VHDL, the interface is declared as:

PORT( clk : IN std logic;
reset : IN std logic;
enb : IN std logic;
in@ : IN std logic vector(7 DOWNTO 0); -- uint8
inl hStart : IN std logic;
inl hEnd : IN std logic;
inl vStart : IN std logic;
inl vEnd : IN std logic;
inl valid : IN std logic;
outo : OUT  std logic vector(7 DOWNTO 0); -- uint8
outl hStart : OUT  std logic;
outl hEnd : OUT  std logic;
outl vStart : OUT  std logic;
outl vEnd : OUT  std logic;
outl valid : OUT  std logic

);

3-3
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In Verilog, the interface is declared as:

input clk;

input reset;

input enb;

input [7:0] in®; // uint8
input inl hStart;

input inl hEnd;

input inl vStart;

input inl vEnd;

input inl valid;

output [7:0] out®; // uint8
output outl hStart;

output outl hEnd;

output outl vStart;

output outl vEnd;

output outl valid;
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Blocks and System Objects Supporting HDL Code Generation

Most blocks and objects in Vision HDL Toolbox are supported for HDL code generation. For
exceptions, see “HDL Code Generation Support in Vision HDL Toolbox” on page 3-3. This page helps
you find blocks and objects supported for HDL code generation in other MathWorks® products.

Blocks

In the Simulink library browser, you can find libraries of blocks supported for HDL code generation in
the HDL Coder, Communications Toolbox HDL Support, DSP System Toolbox HDL Support
block libraries, and others.

To create a library of HDL-supported blocks from all your installed products, enter hd11ib at the
MATLAB command line. This command requires an HDL Coder license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.
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*Documentation Al

= CONTENTS

# Documentation Home

#« Blocks

Category
DSP System Toolbox

Signal Generation,
Manipulation, and Analysis

Filter Implementation

Transforms and Speciral
Analysis

Statistics and Linear Algebra
Fixed-Point Design

HDL Coder

HDL Verifier

LTE HDL Toolbox

Mixed-Signal Blockset

SerDes Toolbox

SimEvents

Simulink Test

Extended Capability

| CiC++ Code Generation

¥| HDL Code Generation

Ll PLC Code Generation

Ll Fixed-Point Conversion

Close

21

10

34
36

28

Examples

Functions Blocks

Apps Search Help

DSP System Toolbox — Blocks

n Results are filtered

By Category Alphabetical List

Signal Generation, Manipulation, and Analysis

Signal Operations
Downsample

Repeat

Sample and Hold
Upsample

DC Blocker

Signal Generation
Constant

NCO

NCO HDL Optimized

Sine Wave
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Spectrum Analyzer
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Matrix Viewar
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To Workspace

System Objects

Resample input at lower rate by deleting samples
Resample input at higher rate by repeating values
Sample and hold input signal

Resample input at higher rate by inserting zeros

Block DC component

Generate constant value
Generate real or complex sinusoidal signals
Generate real or complex sinusoidal signals—optimized for HDL code generation

Generate continuous or discrete sine wave

Display frequency spectrum

Display and analyze signals generated during simulation and log signal data to MATLAB
Dizplay matrices as color images

View vectors of data over time

Write data to MATLAB workspace

To find System objects supported for HDL code generation, see Predefined System Objects (HDL

Coder).
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Generate HDL Code From Simulink

Introduction

This page shows you how to generate HDL code from the design described in “Design Video
Processing Algorithms for HDL in Simulink”. You can generate HDL code from the HDL Algorithm
subsystem in the model.

To generate HDL code, you must have an HDL Coder license.

Prepare Model

Run the visionhdlsetup function to configure the model for HDL code generation. If you started
your design using the Vision HDL Toolbox Simulink model template, your model is already configured
for HDL code generation.

Generate HDL Code

Right-click the HDL Algorithm block, and select HDL Code > Generate HDL from subsystem to
generate HDL using the default settings. The output log of this operation is shown in the MATLAB
Command Window, along with the location of the generated files.

To change code generation options, use the HDL Code Generation section of Simulink
Configuration Parameters. For guidance through the HDL code generation process, or to select a
target device or synthesis tool, right-click on the HDL Algorithm block, and select HDL Code > HDL
Workflow Advisor.

Alternatively, from the MATLAB Command Window, you can call:

makehdl([modelname '/HDL Algorithm'])

Generate HDL Test Bench

You can select options to generate a test bench in Simulink Configuration Parameters or in HDL
Workflow Advisor.

Alternatively, to generate an HDL test bench from the command line, call:

makehdltb([modelname '/HDL Algorithm'])

See Also

Functions
makehdl | makehdltb

Related Examples

. “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder)
. “Choose a Test Bench for Generated HDL Code” (HDL Coder)
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Generate HDL Code From MATLAB

3-8

This page shows you how to generate HDL code from the design in the “Design a Hardware-Targeted
Image Filter in MATLAB” example.

To generate HDL code, you must have an HDL Coder license.

Create an HDL Coder Project

Copy the relevant files to a temporary folder.

functionName = 'HDLTargetedDesign';

tbName = 'VisionHDLMATLABTutorialExample';

vhtExampleDir = fullfile(matlabroot, 'examples', 'visionhdl');
workDir = [tempdir 'vht matlabhdl ex'];

cd(tempdir)

[~, ~, ~]1 = rmdir(workDir, 's');
mkdir(workDir)

cd(workDir)

copyfile(fullfile(vhtExampleDir, [functionName,'.m*']), workDir)
copyfile(fullfile(vhtExampleDir, [tbName,'.m*']), workDir)

Open the HDL Coder app and create a new project.

coder -hdlcoder -new vht matlabhdl ex

In the HDL Code Generation pane, add the function file HDLTargetedDesign.m and the test
bench file VisionHDLMATLABTutorialExample.m to the project.

Click next to the signal names under MATLAB Function to define the data types for the input and
output signals of the function. The control signals are Logical scalars. The pixel data type is uint8.
The pixel input is a scalar.

Generate HDL Code

Click Workflow Advisor to open the advisor.

Click HDL Code Generation to view the HDL code generation options.

On the Target tab, set Language to Verilog or VHDL.

Also on the Target tab, select Generate HDL and Generate HDL test bench.

On the Coding Style tab, select Include MATLAB source code as comments and Generate
report to generate a code generation report with comments and traceability links.

gua A W N R

6 Click Run to generate the HDL design and the test bench with reports.

Examine the log window and click the links to view the generated code and the reports.
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See Also

Related Examples

. “Getting Started with MATLAB to HDL Workflow” (HDL Coder)

. “Generate HDL Code from MATLAB Code Using the Command Line Interface” (HDL Coder)
. “HDL Code Generation for System Objects” (HDL Coder)

. “Pixel-Streaming Design in MATLAB” on page 2-166
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Modeling External Memory

3-10

You can model external memory using features from Computer Vision Toolbox™ Support Package for
Xilinx® Zynq®-Based Hardware or SoC Blockset™. Both products provide models for a frame buffer or
a random access interface. They both also map your subsystem ports to physical AXI memory
interfaces when you generate HDL code and target a prototype board.

Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware provides a simple model
of the memory interface. It does not model the timing of the interface. This level of modeling assists
with targeting a memory interface on hardware, but behavior can differ between the simulation and
the hardware. For more information, see “Model External Memory Interfaces” (Computer Vision
Toolbox Support Package for Xilinx Zynq-Based Hardware).

SoC Blockset provides library blocks to model a memory controller and multiple memory channels.
This model calculates and visualizes memory bandwidth, burst counts, and transaction latencies in
simulation. You can also model memory accesses from a processor as part of hardware-software co-
design. Use the SoC Builder app to generate code for FPGA and processor designs and load and run
the design on a board. You can also deploy an AXI memory interconnect monitor on your FPGA, which
can return memory transaction information for debugging and visualization in Simulink. This level of
modeling helps you verify throughput and latency requirements and enables modeling of multiple
memory consumers, including processor memory access. For more information, see “Memory
Transactions” (SoC Blockset).
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Frame Buffer

Computer Vision Toolbox Support Package
for Xilinx Zyng-Based Hardware

SoC Blockset

This figure shows part of the “Histogram
Equalization with Zyng-Based Hardware”
(Computer Vision Toolbox Support Package for
Xilinx Zyng-Based Hardware) example. The Video
Frame Buffer block accepts and returns the pixel
streaming interface used by Vision HDL Toolbox
blocks. It reads and returns an entire frame when
you set the pop signal to 1. To use this block in
your designs, copy it from the example model.

This figure shows part of the “Histogram
Equalization Using Video Frame Buffer” (SoC
Blockset) example. The example shows how to
use the Memory Channel and Memory Controller
library blocks to model a frame buffer and
additional memory consumers. You can use this
model to confirm that the memory interface
meets the throughput and latency requirements
of your design. You can measure the bandwidth
and transaction latency for each memory
consumer and check the measurements against
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Random Access

Computer Vision Toolbox Support Package
for Xilinx Zyng-Based Hardware

SoC Blockset

This figure shows part of the “Image Rotation
with Zyng-Based Hardware” (Computer Vision
Toolbox Support Package for Xilinx Zynq-Based
Hardware) example. The External Memory block
reads and writes to any address in the memory. In
this case, rather than connecting the pixel stream
to the memory interface, your custom FPGA logic
must generate read and write transactions with
specific addresses. To use this block in your
designs, copy it from the example model.

.Hcmar:.r Cont

This figure shows part of the “Random Access of
External Memory” (SoC Blockset) example. This
design uses a Memory Controller and two
Memory Channel blocks to implement a random-
access interface. In this case, rather than
connecting the pixel stream to the memory
interface, your custom FPGA logic must generate
read and write transactions with specific
addresses.

oller

See Also

“Model External Memory Interfaces” (Computer Vision Toolbox Support Package for Xilinx Zyng-
Based Hardware) | “Memory Transactions” (SoC Blockset)
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HDL Cosimulation

HDL Cosimulation

HDL cosimulation links an HDL simulator with MATLAB or Simulink. This communication link
enables integrated verification of the HDL implementation against the design. To perform this
integration, you need an HDL Verifier™ license. HDL Verifier cosimulation tools enable you to:
» Use MATLAB or Simulink to create test signals and software test benches for HDL code

* Use MATLAB or Simulink to provide a behavioral model for an HDL simulation

* Use MATLAB analysis and visualization capabilities for real-time insight into an HDL
implementation
» Use Simulink to translate legacy HDL descriptions into system-level views

See Also

More About
. “HDL Cosimulation” (HDL Verifier)
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FPGA-in-the-Loop

FPGA-in-the-loop (FIL) enables you to run a Simulink or MATLAB simulation that is synchronized with
an HDL design running on an FPGA board. This link between the simulator and the board enables you
to verify HDL implementations directly against Simulink or MATLAB algorithms. You can apply real-
world data and test scenarios from these algorithms to the HDL design that is running on the FPGA.

In Simulink, you can use the FIL Frame To Pixels and FIL Pixels To Frame blocks to accelerate
communication between Simulink and the FPGA board. In MATLAB, you can modify the generated
code to speed up communication with the FPGA board.

FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks

This example shows how to modify the generated FPGA-in-the-loop (FIL) model for more efficient
simulation of the Vision HDL Toolbox™ streaming video protocol.

Autogenerated FIL Model

When you generate a programming file for a FIL target in Simulink, the HDL Workflow Advisor
creates a model to compare the FIL simulation with your Simulink design. For details of how to
generate FIL artifacts for a Simulink model, see “FIL Simulation with HDL Workflow Advisor for
Simulink” (HDL Verifier).

For Vision HDL Toolbox designs, the FIL block in the generated model replicates the pixel-streaming
interface and sends one pixel at a time to the FPGA. The model shown was generated from the
example model in “Design Video Processing Algorithms for HDL in Simulink”.
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The top part of the model replicates your Simulink design. The generated FIL block at the bottom
communicates with the FPGA. ToFILSrc subsystem copies the pixel-stream input of the HDL
Algorithm block to the FromFILSrc subsystem. The ToFILSink subsystem copies the pixel-stream
output of the HDL Algorithm block into the Compare subsystem, where it is compared with the output
of the HDL Algorithm fil block. For image and video processing, this setup is slow because the model
sends only a single pixel, and its associated control signals, in each packet to and from the FPGA
board.
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Modified FIL Model for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can use the generated FIL block
with vector input rather than streaming. This example includes a model,
FILSimulinkWithVHTExample.slx, created by modifying the generated FIL model. The modified model
uses the FIL Frame To Pixels and FIL Pixels To Frame blocks to send one frame at a time to the
generated FIL block. You cannot run this model as is. You must generate your own FIL block and
bitstream file that use your board and connection settings.

~ uinie —Juint
pivel —— | pimelln pocelOut

pixelcontrol
ctrln cirlOut

HDL Algarithm

To convert from the generated model to the modified model:

1 Remove the ToFILSrc, FromFILSrc, ToFILSink, and Compare subsystems, and create a branch at
the frame input of the Frame To Pixels block.

2  Insert the FIL Frame To Pixels block before the HDL Algorithm fil block. Insert the FIL Pixels To
Frame block after the HDL Algorithm fil block.

3 Branch the frame output of the Pixels To Frame block for comparison. You can compare the
entire frame at once with a Diff block. Compare the validQut signals using an XOR block.

4 [n the FIL Frame To Pixels and FIL Pixels To Frame blocks, set the Video format parameter to
match the video format of the Frame To Pixels and Pixels To Frame blocks.

5 Set the Vector size in the FIL Frame To Pixels and FIL Pixels To Frame blocks to Frame or Line.
The size of the FIL Frame To Pixels vector output must match the size of the FIL Pixels To Frame
vector input. The vector size of the FIL block interfaces does not modify the generated HDL code.
It affects only the packet size of the communication between the simulator and the FPGA board.

The modified model sends an entire frame to the FPGA board in each packet, significantly improving
the efficiency of the communication link.

FPGA-in-the-Loop Simulation with Multipixel Streaming

When using FPGA-in-the-Loop with a multipixel streaming design, you must flatten the pixel ports to
vectors for input and output of the FIL block. Use Selector blocks to separate the input pixel streams
into NumPixels vectors, and use a Vector Concatenate block to recombine the output vectors.

If each pixel is represented by more than one component, the FIL Frame To Pixels block has one data

port per component and the FIL block has NumPixelsx NumComponents ports. Split each component
matrix into NumPixels vectors.
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This model shows a multipixel, single component design.
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Also, in Configuration Parameters > HDL Code Generation > Global Settings > Coding style,

select the Scalarize vector ports checkbox.
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FPGA-in-the-Loop Simulation with Vision HDL Toolbox System Objects

This example shows how to modify the generated FPGA-in-the-loop (FIL) script for more efficient
simulation of the Vision HDL Toolbox™ streaming video protocol. For details of how to generate FIL
artifacts for a MATLAB® System object™, see “FIL Simulation with HDL Workflow Advisor for
MATLAB” (HDL Verifier).

Autogenerated FIL Function

When you generate a programming file for a FIL target in MATLAB, the HDL Workflow Advisor
creates a test bench to compare the FIL simulation with your MATLAB design. For Vision HDL
Toolbox designs, the DUTname fil function in the test bench replicates the pixel-streaming interface
and sends one pixel at a time to the FPGA. DUTname is the name of the function that you generated
HDL code from.

This code snippet is from the generated test bench TBname fil.m, generated from the example
script in “Pixel-Streaming Design in MATLAB” on page 2-166. The code calls the generated
DUTname fil function once for each pixel in a frame.

for p = l:numPixPerFrm
[pixOutVec( p ),ctrlOutVec( p )] = PixelStreamingDesignHDLDesign fil( pixInVec( p ), ctrlInV
end

The generated DUTname fil function calls your HDL-targeted function. It also calls the
DUTname sysobj fil function, which contains a System object that connects to the FPGA.
DUTname fil compares the output of the two functions to verify that the FPGA implementation
matches the original MATLAB results. This snippet is from the file DUTname fil.m.

% Call the original MATLAB function to get reference signal
[ref pixOut,tmp ctrlOut] = PixelStreamingDesignHDLDesign(pixIn,ctrlIn);

% Run FPGA-in-the-Loop
[pixOut,ctrlOut hStart,ctrlOut hEnd,ctrlOut vStart,ctrlOut vEnd,ctrlOut valid]
= PixelStreamingDesignHDLDesign sysobj fil(pixIn,ctrlIn hStart,ctrlIn hEnd,ctrlIn vStart,ctrlIi

% Verify the FPGA-in-the-Loop output
hdlverifier.assert(pixQut, ref pixOut, 'pixOut');

For image and video processing, this setup is slow because the function sends only one pixel, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Test Bench for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can modify the autogenerated
test bench, TBname fil.m. The modified test bench calls the FIL System object directly, with one
frame at a time. These snippets are from the

PixelStreamingDesignHDLTestBench fil frame.m script, modified from FIL artifacts
generated from the example script in “Pixel-Streaming Design in MATLAB” on page 2-166. You
cannot run this script as is. You must generate your own FIL System object, function, and bitstream
file that use your board and connection settings. Then, either modify your version of the generated
test bench, or modify this script to use your generated FIL object.

Declare an instance of the generated FIL System object.
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fil = class PixelStreamingDesignHDLDesign sysobj;
Comment out the loop over the pixels in the frame.
for p = l:numPixPerFrm

[pixOutVec( p ),ctrlOutVec( p )] = PixelStreamingDesignHDLDesign fil( pixInVec( p )
end

o® o° o°

Replace the commented loop with the code below. Call the step method of the fil object with
vectors containing the whole frame of data pixels and control signals. Pass each control signal to the
object separately, as a vector of logical values. Then, recombine the control signal vectors into a
vector of structures.

[pixOutVec,hStartOut,hEndQut,vStartOut, vEndOut,validOut] = ...
step(fil,pixInVec, [ctrlInVec.hStart]"', [ctrlInVec.hEnd]"', [ctrlInVec.vStart]',[ctrlInVec.vEnd]
ctrlOutVec = arrayfun(@(hStart,hEnd,vStart,vEnd,valid) ...
struct('hStart',hStart, 'hEnd',hEnd, 'vStart',vStart, 'vEnd',vEnd, 'valid',valid), ...
hStartOut,hEndOut,vStartOut, vEndOut,validOut);

These code changes remove the pixel-by-pixel verification of the FIL results against the MATLAB
results. Optionally, you can add a pixel loop to call the reference function, and a frame-by-frame
comparison of the results. However, calling the original function for a reference slows down the
simulation.

for p = l:numPixPerFrm
[ref pixOutVec(p),ref ctrlOutVec(p)] = PixelStreamingDesignHDLDesign(pixInVec(p),ctrlInVec(|
end

After the call to the fil object, compare the output vectors.

hdlverifier.assert(pixQutVec', ref pixOutVec, 'pixOut')
hdlverifier.assert([ctrlOutVec.hStart], [ref ctrlOutVec.hStart], 'hStart')
hdlverifier.assert([ctrlOutVec.hEnd], [ref ctrlOutVec.hEnd], 'hEnd")
hdlverifier.assert([ctrlOutVec.vStart], [ref ctrlOutVec.vStart], 'vStart')
hdlverifier.assert([ctrlOutVec.vEnd],[ref ctrlOutVec.vEnd], 'vEnc')
hdlverifier.assert([ctrlOutVec.valid], [ref ctrlOutVec.valid], 'valid")

This modified test bench sends an entire frame to the FPGA board in each packet, significantly

improving the efficiency of the communication link.

See Also

Blocks
FIL Frame To Pixels | FIL Pixels To Frame | Image Filter

Objects
visionhdl.ImageFilter

More About
. “FPGA Verification” (HDL Verifier)



Prototype Vision Algorithms on Zyng-Based Hardware

Prototype Vision Algorithms on Zynqg-Based Hardware

You can use the Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware to
prototype your vision algorithms on Zyng-based hardware that is connected to real input and output
video devices. Use the support package to:

» Capture input or output video from the board and import it into Simulink for algorithm
development and verification.

* Generate and deploy vision IP cores to the FPGA on the board. (requires HDL Coder)

* Generate and deploy C code to the ARM® processor on the board. You can route the video data
from the FPGA into the ARM® processor to develop video processing algorithms targeted to the
ARM processor. (requires Embedded Coder®)

* View the output of your algorithm on an HDMI device.

Video Capture

Using this support package, you can capture live video from your Zynq device and import it into
Simulink. The video source can be an HDMI video input to the board, an on-chip test pattern
generator included with the reference design, or the output of your custom algorithm on the board.
You can select the color space and resolution of the input frames. The capture resolution must match
that of your input camera.

Once you have video frames in Simulink, you can:

* Design frame-based video processing algorithms that operate on the live data input. Use blocks
from the Computer Vision Toolbox libraries to quickly develop frame-based, floating-point
algorithms.

* Use the Frame To Pixels block from Vision HDL Toolbox to convert the input to a pixel stream.
Design and verify pixel-streaming algorithms using other blocks from the Vision HDL Toolbox
libraries.

Reference Design

The Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware provides a reference
design for prototyping video algorithms on the Zyng boards.

When you generate an HDL IP core for your pixel-streaming design using HDL Workflow Advisor, the
core is included in this reference design as the FPGA user logic section. Points A and B in the diagram
show the options for capturing video into Simulink.

The FPGA user logic can also contain an optional interface to external frame buffer memory, which is
not shown in the diagram.
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Note The reference design on the Zyng device requires the same video resolution and color format
for the entire data path. The resolution you select must match that of your camera input. The design
you target to the user logic section of the FPGA must not modify the frame size or color space of the
video stream.

The reference design does not support multipixel streaming.

Deployment and Generated Models

By running all or part of your pixel-streaming design on the hardware, you speed up simulation of
your video processing system and can verify its behavior on real hardware. To generate HDL code
and deploy your design to the FPGA, you must have HDL Coder and the HDL Coder Support Package
for Xilinx Zynq Platform, as well as Xilinx Vivado® and the Xilinx SDK.

After FPGA targeting, you can capture the live output frames from the FPGA user logic back to
Simulink for further processing and analysis. You can also view the output on an HDMI output
connected to your board. Using the generated hardware interface model, you can control the video
capture options and read and write AXI-Lite ports on the FPGA user logic from Simulink during
simulation.

The FPGA targeting step also generates a software interface model. This model supports software
targeting to the Zynq hardware, including external mode, processor-in-the-loop, and full deployment.
It provides data path control, and an interface to any AXI-Lite ports you defined on your FPGA
targeted subsystem. From this model, you can generate ARM code that drives or responds to the AXI-
Lite ports on the FPGA user logic. You can then deploy the code on the board to run along with the
FPGA user logic. To deploy software to the ARM processor, you must have Embedded Coder and the
Embedded Coder Support Package for Xilinx Zynq Platform.
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See Also

More About

. “Computer Vision Toolbox Support Package for Xilinx Zyng-Based Hardware”
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4 Biock Reference Examples

Select Region of Interest

This example shows how to select a region of active frame from a video stream by using the ROI
Selector block from the Vision HDL Toolbox™.

There are numerous applications where the input video is divided into several zones. In medical
imaging, the boundaries of a tumor may be defined on an image or in a volume for the purpose of

measuring its size. In geographical information systems (GIS), an ROI can be taken as a polygonal
selection from a 2-D map.

Example Model

uintg
T el
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ROI Selection

The example model includes a Video Source block that contains a 240p video sample. Each pixel is a

scalar uint8 value that represents intensity. The green and red lines represent full-frame processing
and pixel-stream processing, respectively.

Serialize the Image

Use Frame To Pixels block to convert a full-frame image into pixel stream. To simulate the effect of
horizontal and vertical blanking periods found in real life hardware video systems, the active image is
augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:



Select Region of Interest

Function Block Parameters: Frame To Pixels

Frame To Pixels {mask) (link)

Parameters

Mumber of components: |1

Video format:
240p

Video Format Parameters

Converts a full frame image to pixel stream.

Tatal video lines

Active video lines

Y

Video

Active pixels per line: 320 Active video lines: 240
Total pixels per line: 402 Total video lines: 324
Starting active line: 1 Ending active line: 240
Front porch: 44 Back porch: 38
Total pixels per line
- -
Starting active line j
Active pixels per line
Back € Front
Porch Act ive Porch
HF

Ending active line J

oK Cancel Help

The Number of components parameter is set to 1 for grayscale image input, and the Video format
parameter is 240p to match the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the source image. Six
other parameters, namely, Total pixels per line, Total video lines, Starting active line, Ending
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4-4

active line, Front porch, and Back porch, specify how many non-image data will be augmented on
the four sides of the Active Video. For more information, see the Frame To Pixels block reference

page.

Note that the sample time of the Video Source block is determined by the product of Total pixels per
line and Total video lines.

Select Regions of Interest

The ROI Selection subsystem contains only an ROI Selector block.

winke
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Use the ROI Selector block to select regions of interest. You can use the Regions parameter to
experiment with different region sizes and examine their effect on the output frames. In this model,
the Regions parameter is set to [100 100 50 50;220 170 100 70] which represents two
regions, each specified by [hPos vPos hSize vSize]. The first region is 50-by-50 pixels and
located 100 pixels to the right and 100 pixels down from the top-left corner of the active frame. The
second region is 100 pixels wide and 70 pixels tall, and is located in the bottom-right corner of the
active frame.

The ROI Selector block accepts a pixel stream and a bus that contains five control signals from the
Frame To Pixels block. It returns each region as a pixel stream that uses the same protocol, by
manipulating the control signals. Each region is selected by setting the valid signal in the output
pixelcontrol bus to false for any pixels not included in the requested region.

Display Regions of Interest

Use the Pixels To Frame block to convert the pixel stream back into a full frame. Since the output of
the Pixels To Frame block is a 2-D matrix of a full image, there is no further need for the
pixelcontrol bus.

The Number of components and Video format parameters of both Frame To Pixels and Pixels To
Frame are set to 1 and 240p, respectively, to match the format of the video source. The size of each
active frame is smaller than 240p after the ROI selection. The Pixels to Frame block returns a 240-
by-320 matrix with the active portion of the frame in the top-left corner.

Run the model to display the results. The model displays the output video streams by using three
Video Viewer blocks.

* Source Image View -- The input video from the Video Source block

* ROI Selector Viewerl -- The 50-by-50 pixel region

* ROI Selector Viewer2 -- The 100-by-70 pixel region



Select Region of Interest

One frame of the source video and the two regions are shown from left to right.

"y Source Image View [T [Py ROI Selector Viewerl Iy ROI Selector Viewer2

Eile Tools WView Simulation Help ~ | File Tools View Simulation Help a | File Tools Wiew Simulation Help N
&0 Q Q & | [|1oo% - || @ LR & 2| || O aa@ |l

® k@ e @@ e ®Pr®| = e

Ready

1:240%x320 T=260496.000 Ready 1:240%x320 T=260496.000 Ready 1:240x320 T=260496.000

The Unit Delay block on the top level of the model is to time-align the matrices for a fair comparison.

Generate HDL Code

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('ROISelectionHDL/ROI Selection')

To generate a test bench, use the following command:

makehdltb('R0OISelectionHDL/ROI Selection')

See Also

Blocks
Frame To Pixels | Pixels To Frame
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Select Regions for Vertical Reuse

rhinos.avi |
V: 240x320, 0.0 fps.

Video Source

This example shows how to divide a frame into tiled regions of interest (ROIs) and use those regions
to configure the ROI Selector block for vertical reuse.

Vertical reuse means dividing each frame into vertically-aligned regions where each column of
regions shares a pixel stream. This arrangement enables parallel processing of each column, and the
reuse of downstream processing logic for each region in the column.

Set up the size of the frame.

frmActivelines = 240;
frmActivePixels = 320;

Divide the frame into equally-sized vertically-aligned regions, or tiles. The
visionhdlframetoregions function returns an array of such regions, where each region is defined
by four coordinates, and is of the form [ hPos vPos hSize vSize ]. These tile counts divide evenly into
the frame dimensions, so no remainder pixels exist. The output regions cover the entire frame.

numHorTiles 2;
numVerTiles = 2;
regions = visionhdlframetoregions(frmActivePixels, frmActivelLines,numHorTiles,numVerTiles)

regions =
1 1 160 120
161 1 160 120

1 121 160 120
161 121 160 120

The ROI Selector block in the Simulink model has the Reuse output ports for vertically aligned
regions parameter selected, and uses the regions variable to define its output streams. The block
has one output pixel stream per column of regions.

open_system('TiledROIHDL")

Video

Image
1m0 yiewer
P pirel frame

Pixals To Frama Left Viewer
. validOut —w—]

Video
Viewar

W pixel frame | Image

Pixels To Frame
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Right Viewer

| pacel1

ponelOut pixal frame »|image 4=
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N . L ctr walidOut =]
picl righiregions e e
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Region Processing

Recombine Tiles

Capyright 2020 The MathWorks, Inc.



Select Regions for Vertical Reuse

The start and end signals define each region in the pixel stream. When you run the model, you can
see the output tiled regions changing in the Left Viewer and Right Viewer windows. The example
performs opposite gamma correction operations on the left and right tiles, and then reassembles the
four tiles into a complete frame by manipulating the pixelcontrol signals.

The blanking interval required by the downstream processing algorithm must be less than the
interval between tiles. The blanking interval after each region is less than one line of pixels, so
operations that require a vertical blanking interval, like those that use a line buffer, do not work. The
gamma correction operation uses a lookup table that does not require a blanking interval.

sim('TiledROIHDL")

ELeﬁ Viewer | = ” (=] ” 23 |
File Tools View Simulation Help ¥
B O A Q| B oo "

®Pr®| =

Ready [:120:160 T=1302450.000
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[#] Recombined Viewer = |[® ] =]
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[#] Right Viewer = |[® ] =]
File Tools View Simulation Help o
B O & Q| o v

®k®| @

Feady [:120:160 T=1302450.000

See Also
ROI Selector | visionhdlframetoregions
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Construct a Filter Using Line Buffer

This example shows how to use the Line Buffer block to extract neighborhoods from an image for
further processing. The model constructs a separable Gaussian filter.

%320 .
_ fuank Video

magel agedut Pl [mage .
30%320] g N

Vide r Balance HDL Delay
{Input

 juniE uantB [240x320
pixel —— ] pinelin piia| Out Tame ] i
— [240320] :
[Ratw320) § n cirlout validOut F——— "
HDL Algorithm

Inside the HDL Algorithm subsystem, the Line Buffer block is configured for a 5-by-5 neighborhood.
The output is a 5-by-1 column vector. The Gain and Sum blocks implement separate horizontal and
vertical components of a 5-by-5 Gaussian filter with a 0.75 standard deviation. After vertical filtering,
the model stores the column sums in a shift register that creates a 1-by-5 row vector. The row values
are filtered again to calculate the new central pixel value of each neighborhood.
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You can generate HDL code from the HDL Algorithm subsystem. You must have the HDL Coder™
software installed to run this command.

makehdl('SeparableFilterSimpleHDL/HDL Algorithm')

To generate an HDL test bench, use this command.
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Construct a Filter Using Line Buffer

makehdltb('SeparableFilterSimpleHDL/HDL Algorithm")

See Also

Blocks
Frame To Pixels

Objects
visionhdl.LineBuffer
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Convert RGB Image to YChCr 4:2:2 Color Space

This example shows how to convert a pixel stream from R'G'B' color space to Y'CbhCr 4:2:2 color
space.

. uintB [1:3] _ JuintB [123] B [4 B0 ]
) . pixe —| pixelin pixalCut — pixel rame f———— P 1
D OGS S X, X, 4 w60 3
g8 b——— ] fram [1x3] [1x3]
J4E 0 s pixelcantrol pixelcontrol I
| chri chrln cirlOut chrl slid Ot
HOL Algorithm

The model imports a 480p RGB image, then the Frame to Pixels block converts it to a pixel stream.
Inside the HDL Algorithm subsystem, the Color Space Converter and Chroma Resampler blocks
convert the pixel stream to YCbCr 4:2:2 format.

uirtd [1x3] uirtd [1x3] uirtd [1x3
pixel pixe [u%‘-i' pixel pixe W@

. [1x3] RGBE to
pixelin YChCr pixslcontrol Chroma Resample
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cir cifl
Il-l‘l Iin

=i ctr

The waveform of the input and output pixel stream of the Chroma Resampler block shows the
downsampling of the CbCr component values. The latency of the Chroma Resampler block depends
on the size of the antialiasing filter. This example uses the default filter, which has 29 taps.

447d8a
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LE]
0000
0

0

28170 s 28180 s

[100s[2818400s

Cursor 1 2818400s

28153.00s

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('ChromaResampleExample/HDL Algorithm')
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Convert RGB Image to YCbCr 4:2:2 Color Space

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. Consider reducing the simulation time before generating the test
bench.

makehdltb('ChromaResampleExample/HDL Algorithm"')

The part of the model between the Frame to Pixels and Pixels to Frame blocks can be implemented on
an FPGA.

See Also

Blocks
Chroma Resampler | Color Space Converter | Frame To Pixels
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Compute Negative Image

Create the negative of an image by looking up the opposite pixel values in a table.

| fps Video
piwel | pixelin pialOut | pixel frame M Image I: )
! i Wl
ctrl == cirlin cirlOut = ctd validCiut F—w—] -
|l-l'| Pixel-Stream Lookup Table

For a hardware-compatible design, the model converts the input video to a stream of pixel values. The
Frame to Pixels and Pixels to Frame blocks are configured to match the format of the video source.

The Pixel-Stream Lookup Table subsystem contains a Lookup Table block, configured with inversion
data. The input pixel data type is uint8, so the negative value is 255 - pixel, or
linspace(255,0,256). The output pixel data type is the same as the data type of the table
contents, in this case, uints8.

Y

1) pixel picel ———————»{( 1 )

pixelin Lookup Table pixelOut

| ctri ctrl

ciriChut

To generate and check the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:
makehdl('LookupTableHDL/Pixel-Stream Lookup Table')

To infer a RAM to implement the lookup table, the LUTRegisterResetType property is set to none.
To access this property, right-click the Lookup Table block inside the subsystem, and navigate to
HDL Coder > HDL Block Properties.

To generate a test bench for the generated HDL code, use the following command:

makehdltb('LookupTableHDL/Pixel-Stream Lookup Table')

See Also

Blocks
Frame To Pixels | Lookup Table
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Adapt Image Filter Coefficients from Frame to Frame

This example shows how to use programmable coefficients to correct a time-varying impairment on
the input video.

There are many different techniques for filtering image and video signals that require filter
coefficients that vary from frame to frame. To dynamically change the coefficients of the Image Filter
block, set the Filter coefficients source parameter to Input port. The Image Filter block samples
the input coefficient port at the beginning of each frame.

The Example Model

The example model applies a brightness impairment to the input video, and the HDL Filter
subsystem calculates filter coefficients for each frame and corrects the impairment. The model
includes three video viewers: one for the original input video, another for the impaired video, and the
third for the result of the filter that counteracts the impairment.

The model also includes Frame to Pixels and Pixels to Frame blocks to convert the matrix format
video to streaming format suitable for HDL modeling.
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pinel | pimelin pielOut —— - piel frame b——————— o *

pixelcontrol pixelcontrol =5 L
b cl chil

. : chri cirlin cirlOut c alid Out p—
o HOLFilter

The Impairment

The impairment in this model is brightness modulation using a slow sine wave. Since the impairment
is modeled purely behaviorally, the first step is to convert the image to double-precision values. The
16-bit counter counts up at the frame rate and the counter value is multiplied by 2*pi/40. The sine
wave output is scaled down by 0.3 and a bias of 1.0 is then added. These calculations result in a
+/-30% change in brightness over a period of 40 frames. After applying the impairment, the model
converts back to uint8 by using rounding with saturation.
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The Filter Algorithm

The HDL Algorithm subsystem starts by extracting a region of interest in the center of the image.
Since this model is configured for a 320x240 video source, it uses a 100x100 region in the center of
the video stream.

The Image Statistics block finds the mean of that central region. A new mean is computed for each
100x100 frame. The block sets the validOut port to true to indicate when the new mean is valid.
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Compute the Scaled Grand Mean

The Adapt Grand Mean subsystem computes the correction factor required to counteract the
impairment.

You could use central-region-mean brightness directly, with a "gray-world" assumption that the
average brightness is mid-scale (128 in this case). But, a more accurate approach is to use the
previous brightness means, with the assumption that the average brightness does not change quickly
frame to frame.

Forming a mean of means is known as a grand mean, but that calculation would give equal weight to
the past frames. Instead, the subsystem weights the past frames with an exponential fractional decay
with the coefficients [1 1/2 1/4 1/8 1/16 1/32 1/64 1/64]. The last coefficient would
normally be 1/128 but by adjusting that value, the sum of the weights becomes exactly 2, making the
normalizing factor a simple shift operation. Note that the initial value of all the delay line registers is
mid-scale (128) to avoid large start-up transients in the correction.



Adapt Image Filter Coefficients from Frame to Frame

The subsystem finds the correction factor using the current mean and the weighted grand mean.
Since the grand mean scaled up by 2, if you subtract the current mean from it, the resulting value is
the weighted grand mean plus or minus the error term in the direction of correcting the error.

The correction is then scaled by 2”-7 and sent to the output port. A normalization could be applied
here by dividing by the grand mean, but in practice, simple scaling works well enough.
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Apply the Correction

The correction output from the Adapt Grand Mean subsystem is then used to scale the filter
coefficients, in this case a Gaussian filter of size 5x5 with a standard deviation of the default 0.5. In
the actual FPGA this filter uses 25 multipliers. Pipelining is of no concern here since these values are
computed well before they are needed. The block samples the coefficient port when the vStart
signal in the input ctrl bus is true.

Going Further

In this simple example, you could alternatively apply the correction factor to the scalar pixel stream
and then filter. The architecture shown can expand for more complex adaptive changes in the filter
coefficients.

The 5x5 multiply of the correction factor with the gaussian coefficients could be implemented as a
single serial multiplier rather than 25 parallel multipliers. To achieve this HDL implementation,
include the Product block in a Subsystem, and right-click the Subsystem to open the HDL Block
Properties. Set the SharingFactor property to 25 to implement a single time-multiplexed multiplier.
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With this setting, the multiply operation uses a 25-times faster clock than the rest of the design.
Consider your required pixel clock speed and whether your device can accommodate the faster rate.

See Also

Blocks
Image Filter | Image Statistics | ROI Selector
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